MCB Accepted Manuscript Posted Online 20 January 2015 Mol. Cell. Biol. doi:10.1128/MCB.01071-14 Copyright © 2015, American Society for Microbiology. All Rights Reserved.

- 2 myofibers and their neuromuscular junctions
- 3

4

- 5 Bonnie Seaberg,<sup>a</sup> Gabrielle Henslee,<sup>a</sup> Shuo Wang,<sup>a</sup> Ximena Paez-Colasante,<sup>a,b,\*</sup> Gary E.
- 6 Landreth<sup>c</sup>, Mendell Rimer<sup>a,b</sup>#
- 7
- 8 Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas
- 9 A&M University Health Science Center, Bryan, Texas USA<sup>a</sup>; Texas A&M University
- 10 Institute for Neuroscience, College Station, Texas, USA<sup>b</sup>; Department of Neurosciences,
- 11 Case Western Reserve University School of Medicine, Cleveland, Ohio, USA<sup>c</sup>
- 12
- 13 Running Head: ERK1/2 in NMJ and myofiber maintenance in vivo
- 14
- 15 #Address correspondence to Mendell Rimer, <u>mjrimer@medicine.tamhsc.edu</u>.

- 17 \*Present address: Ximena Paez-Colasante, Department of Neurology, University of
- 18 Michigan, Ann Arbor, Michigan, USA
- 19
- 20 Word counts: Abstract: 198. Materials and Methods: 1264. Introduction, Results,
- 21 Discussion (combined): 5888.
- 22
- 23
- 24

# 25 ABSTRACT

| 26 | The Ras-ERK1/2 pathway appears important for the development, maintenance,                 |
|----|--------------------------------------------------------------------------------------------|
| 27 | aging and pathology of mammalian skeletal muscle. Yet no gene targeting of Erk1/2 in       |
| 28 | muscle fibers in vivo has been reported to date. We combined a germline mutant Erk1        |
| 29 | with Cre-loxP Erk2 inactivation in skeletal muscle to produce, for the first time, mice    |
| 30 | lacking ERK1/2 selectively in skeletal myofibers. Animals lacking muscle ERK1/2            |
| 31 | displayed stunted postnatal growth, muscle weakness and shorter lifespan. Their            |
| 32 | examined muscles here, sternomastoid and tibialis anterior, displayed fragmented           |
| 33 | neuromuscular synapses and a mixture of modest fiber atrophy and loss, but failed to       |
| 34 | show major changes in fiber type composition or absence of cell surface dystrophin.        |
| 35 | Whereas lack of only ERK1 had no effects on the phenotypes studied, lack of myofiber       |
| 36 | ERK2 explained synaptic fragmentation in the sternomastoid, but not the tibialis anterior, |
| 37 | and a decrease in the expression of the acetylcholine receptor (AChR) epsilon subunit      |
| 38 | gene mRNA in both muscles. A reduction in AChR protein was documented in line with         |
| 39 | the above mRNA results. Evidence of partial denervation was found in the sternomastoid     |
| 40 | but not the tibialis anterior. Thus, myofiber ERK1/2 are differentially required for the   |
| 41 | maintenance of myofibers and neuromuscular synapses in adult mice.                         |
| 42 |                                                                                            |

- 43
- 44
  - 45

### 46 INTRODUCTION

| 47 | Mitogen-activated protein kinases (MAPKs) are components of intracellular                      |
|----|------------------------------------------------------------------------------------------------|
| 48 | signaling modules that control a myriad of cellular processes. MAPK modules consist of         |
| 49 | 3 core protein kinase components. The most downstream is the actual MAPK, a S/T $$             |
| 50 | kinase that phosphorylates the transcription factors, cytoskeletal elements or other           |
| 51 | kinases, that are the targets of regulation by signaling cascades started at the cell surface. |
| 52 | A MAPK is activated by an upstream MAPK kinase (MAP2K), which in turn is activated             |
| 53 | by a MAP2K kinase (MAP3K). MAP3Ks are usually at the receiving end of signals                  |
| 54 | derived from small, monomeric GTPases such as the Ras family or by other more                  |
| 55 | intricate mechanisms (1). In mammalian cells, the prototypical MAPK module is                  |
| 56 | composed of the MAPKs extracellular-signal regulated kinases 1 and 2 (ERK1/2), the             |
| 57 | MAP2Ks MEK1/2 and the MAP3K Raf. ERK1/2 regulate normal cellular responses to                  |
| 58 | multiple growth factors and cytokines in proliferation, differentiation and apoptosis (2,      |
| 59 | 3).                                                                                            |
| 60 | Multiple studies suggest an important role for the Ras-ERK1/2 pathway in the                   |
| 61 | development, normal maintenance, aging and pathology of mammalian skeletal muscle.             |
| 62 | Thus ERK1/2 activity has both stimulatory and inhibitory roles in the differentiation of       |
| 63 | cultured skeletal myotubes that vary with the stage of this protracted process (4-8).          |

64 ERK1/2 have been implicated in the maintenance of adult skeletal muscle mass (9), and,

65 seemingly paradoxically, in the control of both the fast-twitch (10), and the slow-twitch

66 (11) fiber type phenotypes. Alterations in levels of ERK1/2 activity in aging rodent

67 muscle correlate with sarcopenia (12), the loss of muscle mass and strength that occurs

68 with aging (13). Ras-ERK1/2 pathway activity dysregulation underlies the pathology of

| 69 | neuromuscular diseases such as autosomal Emery-Dreifuss muscular dystrophy (14) and           |
|----|-----------------------------------------------------------------------------------------------|
| 70 | of the RASopathies, a group of rare genetic diseases with accompanying skeletal muscle        |
| 71 | abnormalities (15–17). Our own work in cultured myotubes (18) suggests a modulatory           |
| 72 | role for ERK1/2 on the activity of agrin (19), a key synaptogenic factor in the formation     |
| 73 | and maintenance of the neuromuscular junction (NMJ), the synapse between a                    |
| 74 | motoneuron and a skeletal muscle fiber (20). In vitro and in vivo studies implicated          |
| 75 | ERK1/2 in the control of synapse-specific expression of acetylcholine receptor (AChR)         |
| 76 | subunit genes at the NMJ, particularly of $Chrne$ , the gene coding the adult AChR $\epsilon$ |
| 77 | subunit (21–23).                                                                              |
| 78 | Most of the experiments that have been carried out to characterize the role of                |
| 79 | ERK1/2 in skeletal muscle biology have been done in cultured cells, using either              |
| 80 | pharmacological tools, in particular MEK inhibitors, siRNA, constitutively active or          |
| 81 | dominant-negative constructs for the different components of the Ras-ERK1/2 pathway.          |
| 82 | However, no gene targeting investigations on the role of ERK1/2 in developing muscle          |

fibers *in vivo* have been reported to date. We combined a germline *Erk1* mutant with CreloxP inactivation of *Erk2* in skeletal muscle to produce, for the first time, mice lacking
ERK1/2 selectively in skeletal myofibers. We report that ERK1/2 are required for the

86 maintenance of myofibers and NMJs in adult animals.

#### 87 MATERIALS AND METHODS

Ethics statement. Care and treatments of all animals followed the National Institutes of
Health Guide for the Care and Use of Laboratory Animals and were approved by the
Institutional Animal Care and Use Committee of Texas A&M University under animal
use protocol 2012-168.

| 92  | Mice and genotyping. The Cre-driver mice in which Cre is under control of the human                                                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 93  | $\alpha$ -skeletal muscle actin promoter are represented as <i>Hsa-Cre</i> <sup>+/-</sup> . The <i>Erk2</i> floxed allele is                              |
| 94  | represented as $Erk2^{f}$ . Local colonies were established from breeders obtained initially as                                                           |
| 95  | follows: <i>Hsa-Cre</i> <sup>+/-</sup> mice from Jackson labs (JAX stock# 006149); <i>Erk1</i> <sup>+/</sup> ; <i>Erk2</i> <sup>f/+</sup> and             |
| 96  | Erk2 <sup>ff</sup> mice from the Landreth lab, Case Western Reserve University. These crosses were                                                        |
| 97  | used to generate experimental animals: $ErkI^{-/-}$ mice came from $ErkI^{+/-} X ErkI^{-/-}$ . Mice                                                       |
| 98  | deficient in muscle ERK2 (referred in the text as $mErk2^{CKO}$ ) came from Hsa-Cre <sup>+/-</sup> ;                                                      |
| 99  | <i>Erk2</i> <sup>f/+</sup> X <i>Hsa-Cre<sup>-/-</sup>; Erk2</i> <sup>f/f</sup> . Mice deficient in germline ERK1 and muscle ERK2                          |
| 100 | (referred in the text as DKO) came from <i>Hsa-Cre<sup>+/-</sup>; Erk1<sup>+/-</sup>; Erk2<sup>f/f</sup> X Hsa-Cre<sup>-/-</sup>; Erk1<sup>-/-</sup>;</i> |
| 101 | Erk2 <sup>ff</sup> Genotyping was done by PCR with the following primers: Cre: 5'-                                                                        |
| 102 | GCGGTCTGGCAGTAAAAACTATC-3'; 5'-GTGAAACAGCATTGCTGTCACTT-3'.                                                                                                |
| 103 | Erk1: wild type and null allele were detected with these primers: 5'-                                                                                     |
| 104 | GTATCTTGGGTTCCCCATCC-3'; 5'-GGGGAACTTCCTGACTAGGG-3'; 5'-                                                                                                  |
| 105 | GCTCCATGTCGAAGGTGAAT-3'. Erk2: wild type and floxed allele were detected                                                                                  |
| 106 | with these primers: 5'- AGCCAACAATCCCAAACCTG-3'; 5'-                                                                                                      |
| 107 | GGCTGCAACCATCTCACAAT-3'. Mice were housed at 25°C with a 12h light/dark                                                                                   |
| 108 | cycle, fed <i>ad libitum</i> and monitored daily.                                                                                                         |
| 109 | Western blotting. Muscles were dissected, snapped frozen in liquid $\mathrm{N}_2$ and stored at -                                                         |
| 110 | 80°C until use. Most tissue homogenates were prepared in the following buffer: 25mM                                                                       |
| 111 | Tris pH 7.4, 95mM NaCl, 1mM EDTA, 1mM EGTA, 1% SDS, 10% Protease Inhibitor                                                                                |
| 112 | Cocktail (P8340, Sigma), 5mM NaF, 2mM Na <sub>3</sub> VO <sub>4</sub> , 2.5mM Na <sub>4</sub> P <sub>2</sub> O <sub>7</sub> . Lysates used to             |
| 113 | analyze p38 were made in 1% Triton X-100, 30 mM triethanolamine pH 7.5, 50 mM                                                                             |
| 114 | NaCl, 5 mM EGTA, 5 mM EDTA, with the same phosphatase and protein inhibitors as                                                                           |

| 115 | above. Total protein was measured using Biorad Protein Assay, and 50 $\mu g$ per sample                                                           |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 116 | were run on 10% acrylamide denaturing gels. Proteins were transferred to polyvinylidene                                                           |
| 117 | difluoride (PVDF) membranes using a semi-dry blotter (Biorad). Suppliers of primary                                                               |
| 118 | antibodies and dilutions were: Epitomics: Anti-ERK1 (1171-1, 1:1000); anti-ERK2                                                                   |
| 119 | (1586-1, 1:1000). Cell Signaling: Anti-tERK1/2 (9102, 1:1000); anti-p38 (9212, 1:1000);                                                           |
| 120 | anti-pp38 (4511, 1:1000); anti-JNK (9252, 1:500). Santa Cruz Biotechnology: Anti-                                                                 |
| 121 | pERK1/2 (SC7383, 1:200); anti-pJNK (SC6254, 1:200). Sigma: Anti-α-Tub (T6199,                                                                     |
| 122 | 1:4000). Horseradish peroxidase-secondary antibodies (SC2020 and SC2031, Santa Cruz                                                               |
| 123 | Biotechnology; 111-035-003 and 315-035-003, Jackson Immunoresearch) were used at                                                                  |
| 124 | 1:1000-1:3000. Blots were visualized by chemiluminescense following manufacturer's                                                                |
| 125 | instructions (PerkinElmer). Images were acquired and analyzed with an AlphaImager gel                                                             |
| 126 | imaging system (Protein Simple).                                                                                                                  |
| 127 | AChR affinity isolation and probing. AChRs were isolated and detected as previously                                                               |
| 128 | described with minor modifications (24). Briefly, muscles were lysed in 1% Triton X-                                                              |
| 129 | 100, 30 mM triethanolamine pH 7.5, 50 mM NaCl, 5 mM EGTA, 5 mM EDTA, 10%                                                                          |
| 130 | Protease Inhibitor Cocktail (P8340, Sigma), 5mM NaF, 2mM Na <sub>3</sub> VO <sub>4</sub> , 2.5mM Na <sub>4</sub> P <sub>2</sub> O <sub>7,</sub> . |
| 131 | One mg of total protein per muscle lysate was incubated for 30 min with 200 nM biotin-                                                            |
| 132 | $\alpha$ -bungarotoxin (BBTX; B-1196, Life Technologies) at 4°C. Streptavidin–agarose                                                             |
| 133 | (SA100-04, Life Technologies) was used to precipitate the BBTX-AChR complexes.                                                                    |
| 134 | After washing with lysis buffer, complexes were separated by SDS-PAGE, transferred to                                                             |
| 135 | PVDF membranes, and probed with a goat-polyclonal to AChRE at 1:250 (ab166931,                                                                    |
| 136 | Abcam). Bands were visualized by chemiluminescence and quantified as above.                                                                       |

| 137 | Grip strength assay. Forelimb grip strength was assessed with a grip strength meter with   |
|-----|--------------------------------------------------------------------------------------------|
| 138 | single sensor and a standard pull bar and software (Columbus Instruments) as previously    |
| 139 | described (25). Briefly, mouse was directed to grip the bar with forelimbs then pulled off |
| 140 | the bar by the tail, and peak force (in g) was recorded for 3 consecutive trials. Trial    |
| 141 | averages were normalized to body weight (g).                                               |
| 142 | Rotarod. A Rotarod Series 8 (IITC Life Science Inc.) was used for rotarod analysis.        |
| 143 | From 7-19 weeks of age, mice were subjected to two rotarod modes every other week.         |
| 144 | First, constant speed of 4 rpm for 5 min, immediately followed by 0.1 rpm/sec              |
| 145 | acceleration to a maximum speed of 30 rpm, ending the trial at 5 min (25). Time-to-fall    |
| 146 | (sec) was recorded for both modes. Mice were allowed to rest for 10 min and the above      |
| 147 | procedure was repeated twice more for a total of 3 trials. Time-to-fall per mode was       |
| 148 | averaged for the 3 trials. Data for week 7 were considered as adaptation and are not       |
| 149 | presented in the results.                                                                  |
| 150 | Whole mount staining, confocal microscopy and NMJ morphological                            |
| 151 | characterization. Whole mount staining of sternomastoid (STN) and tibialis anterior        |
| 152 | (TA) was essentially done as previously described (26). Anti-synaptophysin (SYN)           |
| 153 | (180130, Life Technologies) was used at 1:200, fluorescein-BTX (F-1176, Life               |
| 154 | Technologies) was used at 1:1000. Rhodamine-rabbit secondary antibody (111-025-144,        |
| 155 | Jackson Immunoresearch) was used at 1:400. At the dilution of anti-SYN used, both          |
| 156 | nerve terminal and pre-terminal axon were visible in many cases. Vectashield (Vector       |
| 157 | Laboratories)-mounted muscle bundles from these preparations were imaged on an A1          |
| 158 |                                                                                            |
|     | confocal microscope (Nikon), with 40X (NA 1.30) and 60X (NA 1.40) oil immersion            |

| 160                                                                                                                                                       | NIS Elements software (Nikon). On the maximal projections, NMJ morphology was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 161                                                                                                                                                       | studied by counting: (i) number of AChR domains per endplate; (ii) faint or weakly-BTX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 162                                                                                                                                                       | stained NMJs, defined as those endplates with noticeably weaker or dimmer BTX stain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 163                                                                                                                                                       | relative to others on the same field; (iii) terminal sprouts, defined as extensions of any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 164                                                                                                                                                       | length and direction of nerve terminal staining beyond AChR stain at a synaptic site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 165                                                                                                                                                       | Central myonuclei quantification. One slide with several 12-14 $\mu$ m-thick frozen cross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 166                                                                                                                                                       | sections from the belly of a STN was stained for H&E by a standard procedure. Images                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 167                                                                                                                                                       | from 5, 20X fields per slide were acquired with an EC3 camera and software (Leica),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 168                                                                                                                                                       | mounted on an Eclipse E1000 microscope (Nikon). Total number of fibers and fibers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 169                                                                                                                                                       | with central nuclei were counted. Replicates within a genotype were averaged for final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 170                                                                                                                                                       | quantification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 171                                                                                                                                                       | Real-time quantitative PCR. Total RNA extraction, reverse transcription, and real-time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 171<br>172                                                                                                                                                | <b>Real-time quantitative PCR.</b> Total RNA extraction, reverse transcription, and real-time PCR were done essentially as previously reported (26). 200 ng of total RNA per sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 171<br>172<br>173                                                                                                                                         | <b>Real-time quantitative PCR.</b> Total RNA extraction, reverse transcription, and real-time PCR were done essentially as previously reported (26). 200 ng of total RNA per sample were used to generate cDNA. All Taqman primer sets and probes were from ABI/Life                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 171<br>172<br>173<br>174                                                                                                                                  | <b>Real-time quantitative PCR.</b> Total RNA extraction, reverse transcription, and real-time PCR were done essentially as previously reported (26). 200 ng of total RNA per sample were used to generate cDNA. All Taqman primer sets and probes were from ABI/Life Technologies as follows: <i>Chrna</i> , Mm00431629_m1; <i>Chrnb</i> , Mm00680412_m1; <i>Chrnd</i> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ol> <li>171</li> <li>172</li> <li>173</li> <li>174</li> <li>175</li> </ol>                                                                               | Real-time quantitative PCR. Total RNA extraction, reverse transcription, and real-time<br>PCR were done essentially as previously reported (26). 200 ng of total RNA per sample<br>were used to generate cDNA. All Taqman primer sets and probes were from ABI/Life<br>Technologies as follows: <i>Chrna</i> , Mm00431629_m1; <i>Chrnb</i> , Mm00680412_m1; <i>Chrnd</i> ,<br>Mm00445545_m1; <i>Chrne</i> , Mm00437411_m1; <i>Chrng</i> , Mm00437419_m1; <i>Runx1</i> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ol> <li>171</li> <li>172</li> <li>173</li> <li>174</li> <li>175</li> <li>176</li> </ol>                                                                  | Real-time quantitative PCR. Total RNA extraction, reverse transcription, and real-time<br>PCR were done essentially as previously reported (26). 200 ng of total RNA per sample<br>were used to generate cDNA. All Taqman primer sets and probes were from ABI/Life<br>Technologies as follows: <i>Chrna</i> , Mm00431629_m1; <i>Chrnb</i> , Mm00680412_m1; <i>Chrnd</i> ,<br>Mm00445545_m1; <i>Chrne</i> , Mm00437411_m1; <i>Chrng</i> , Mm00437419_m1; <i>Runx1</i> ,<br>Mm01213404_m1; <i>Myh3</i> , Mm01332463_m1; 18S rRNA, 4333760F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ol> <li>171</li> <li>172</li> <li>173</li> <li>174</li> <li>175</li> <li>176</li> <li>177</li> </ol>                                                     | <ul> <li>Real-time quantitative PCR. Total RNA extraction, reverse transcription, and real-time</li> <li>PCR were done essentially as previously reported (26). 200 ng of total RNA per sample</li> <li>were used to generate cDNA. All Taqman primer sets and probes were from ABI/Life</li> <li>Technologies as follows: <i>Chrna</i>, Mm00431629_m1; <i>Chrnb</i>, Mm00680412_m1; <i>Chrnd</i>,</li> <li>Mm00445545_m1; <i>Chrne</i>, Mm00437411_m1; <i>Chrng</i>, Mm00437419_m1; <i>Runx1</i>,</li> <li>Mm01213404_m1; <i>Myh3</i>, Mm01332463_m1; 18S rRNA, 4333760F.</li> <li>Myofiber morphological analysis. Dystrophin staining of transverse frozen sections was</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                     |
| <ol> <li>171</li> <li>172</li> <li>173</li> <li>174</li> <li>175</li> <li>176</li> <li>177</li> <li>178</li> </ol>                                        | <ul> <li>Real-time quantitative PCR. Total RNA extraction, reverse transcription, and real-time</li> <li>PCR were done essentially as previously reported (26). 200 ng of total RNA per sample</li> <li>were used to generate cDNA. All Taqman primer sets and probes were from ABI/Life</li> <li>Technologies as follows: <i>Chrna</i>, Mm00431629_m1; <i>Chrnb</i>, Mm00680412_m1; <i>Chrnd</i>,</li> <li>Mm00445545_m1; <i>Chrne</i>, Mm00437411_m1; <i>Chrng</i>, Mm00437419_m1; <i>Runx1</i>,</li> <li>Mm01213404_m1; <i>Myh3</i>, Mm01332463_m1; 18S rRNA, 4333760F.</li> <li>Myofiber morphological analysis. Dystrophin staining of transverse frozen sections was</li> <li>performed essentially as previously described (26), except that sections were not fixed</li> </ul>                                                                                                                                                                                                                                                                                    |
| <ol> <li>171</li> <li>172</li> <li>173</li> <li>174</li> <li>175</li> <li>176</li> <li>177</li> <li>178</li> <li>179</li> </ol>                           | <ul> <li>Real-time quantitative PCR. Total RNA extraction, reverse transcription, and real-time</li> <li>PCR were done essentially as previously reported (26). 200 ng of total RNA per sample</li> <li>were used to generate cDNA. All Taqman primer sets and probes were from ABI/Life</li> <li>Technologies as follows: <i>Chrna</i>, Mm00431629_m1; <i>Chrnb</i>, Mm00680412_m1; <i>Chrnd</i>,</li> <li>Mm00445545_m1; <i>Chrne</i>, Mm00437411_m1; <i>Chrng</i>, Mm00437419_m1; <i>Runx1</i>,</li> <li>Mm01213404_m1; <i>Myh3</i>, Mm01332463_m1; 18S rRNA, 4333760F.</li> <li>Myofiber morphological analysis. Dystrophin staining of transverse frozen sections was</li> <li>performed essentially as previously described (26), except that sections were not fixed</li> <li>and individual primary antibodies to myosin heavy chains (MyHCs) were co-incubated</li> </ul>                                                                                                                                                                                        |
| <ol> <li>171</li> <li>172</li> <li>173</li> <li>174</li> <li>175</li> <li>176</li> <li>177</li> <li>178</li> <li>179</li> <li>180</li> </ol>              | <ul> <li>Real-time quantitative PCR. Total RNA extraction, reverse transcription, and real-time</li> <li>PCR were done essentially as previously reported (26). 200 ng of total RNA per sample</li> <li>were used to generate cDNA. All Taqman primer sets and probes were from ABI/Life</li> <li>Technologies as follows: <i>Chrna</i>, Mm00431629_m1; <i>Chrnb</i>, Mm00680412_m1; <i>Chrnd</i>,</li> <li>Mm00445545_m1; <i>Chrne</i>, Mm00437411_m1; <i>Chrng</i>, Mm00437419_m1; <i>Runx1</i>,</li> <li>Mm01213404_m1; <i>Myh3</i>, Mm01332463_m1; 18S rRNA, 4333760F.</li> <li>Myofiber morphological analysis. Dystrophin staining of transverse frozen sections was</li> <li>performed essentially as previously described (26), except that sections were not fixed</li> <li>and individual primary antibodies to myosin heavy chains (MyHCs) were co-incubated</li> <li>with the anti-dystrophin antibody (15277, Abcam). All MyHC antibodies were from the</li> </ul>                                                                                           |
| <ol> <li>171</li> <li>172</li> <li>173</li> <li>174</li> <li>175</li> <li>176</li> <li>177</li> <li>178</li> <li>179</li> <li>180</li> <li>181</li> </ol> | <ul> <li>Real-time quantitative PCR. Total RNA extraction, reverse transcription, and real-time</li> <li>PCR were done essentially as previously reported (26). 200 ng of total RNA per sample</li> <li>were used to generate cDNA. All Taqman primer sets and probes were from ABI/Life</li> <li>Technologies as follows: <i>Chrna</i>, Mm00431629_m1; <i>Chrnb</i>, Mm00680412_m1; <i>Chrnd</i>,</li> <li>Mm00445545_m1; <i>Chrne</i>, Mm00437411_m1; <i>Chrng</i>, Mm00437419_m1; <i>Runx1</i>,</li> <li>Mm01213404_m1; <i>Myh3</i>, Mm01332463_m1; 18S rRNA, 4333760F.</li> <li>Myofiber morphological analysis. Dystrophin staining of transverse frozen sections was</li> <li>performed essentially as previously described (26), except that sections were not fixed</li> <li>and individual primary antibodies to myosin heavy chains (MyHCs) were co-incubated</li> <li>with the anti-dystrophin antibody (15277, Abcam). All MyHC antibodies were from the</li> <li>Developmental Studies Hybridoma Bank as follows: type 1, A4.840; type 2A, SC-71;</li> </ul> |

| 183 | used undiluted. Fluorophore-conjugated secondary antibodies that matched the primary                 |
|-----|------------------------------------------------------------------------------------------------------|
| 184 | isotype (Jackson Immunoresearch and Sigma) were used at 1:400 and 1:128,                             |
| 185 | respectively. Fiber area analysis was carried out as previously described (26) on                    |
| 186 | overlapping 10X images that covered an entire muscle cross section. Care was taken not               |
| 187 | to measure the same fibers more than once. For fiber typing, 10X overlapping images of               |
| 188 | individual MyHC type and dystrophin staining were assembled in Photoshop (Adobe) to                  |
| 189 | reconstruct an entire muscle cross section. Total fibers were counted from the dystrophin            |
| 190 | staining, and MyHC type fibers were counted from the respective antibody staining.                   |
| 191 | Replicates per muscle/genotype were averaged for final quantification.                               |
| 192 | Statistical analysis. Quantitative data are expressed as mean $\pm$ SEM. Kaplan-Meier                |
| 193 | survival curves were generated and tested for statistical significance using the log-rank            |
| 194 | test with Prism5 (GraphPad Software). Analysis of the Variance (ANOVA) was                           |
| 195 | performed at http://vassarstats.net/. One- and two-sample Student's t-tests were computed            |
| 196 | with Prism5 (GraphPad Software) and Microsoft Excel (Microsoft Corporation),                         |
| 197 | respectively. Wilcoxon Rank Sum test probabilities were computed at                                  |
| 198 | <u>http://socr.stat.ucla.edu</u> . Significance was set at $p < 0.05$ .                              |
| 199 | RESULTS                                                                                              |
| 200 | Generation of skeletal muscle-selective Erk2 conditional mice and of mice lacking                    |
| 201 | ERK1/2 in skeletal muscle fibers.                                                                    |
| 202 | While germline <i>Erk1<sup>-/-</sup></i> mice are viable and fertile but display defective thymocyte |
|     | ,                                                                                                    |

- maturation (27, 28), Erk2<sup>-/-</sup> mice are early embryonic lethal due to failure to form the 203
- ectoplacental cone and extra-embryonic ectoderm (29, 30). Erk2<sup>-/-</sup> embryos do not form 204
- mesoderm (31). A conditional Erk2 allele  $(Erk2^{f/f})$  was generated by Landreth and 205

| 206 | colleagues (32). To delete <i>Erk2</i> selectively in developing and adult skeletal muscle fibers,                             |
|-----|--------------------------------------------------------------------------------------------------------------------------------|
| 207 | $Erk2^{f/f}$ mice were crossed to mice that express Cre under control of the human $\alpha$ -skeletal                          |
| 208 | muscle actin promoter ( <i>Hsa-Cre</i> <sup>+/-</sup> ) (33, 34). Expression of Cre under this promoter was                    |
| 209 | detected beginning at embryonic day (E) 9.5 onwards (33) and in skeletal muscle is                                             |
| 210 | restricted to myofibers. Neither myoblasts nor satellite cells express Cre in these mice                                       |
| 211 | (35). <i>Hsa-Cre<sup>+/-</sup>; Erk2<sup>f/f</sup></i> mice (hereafter referred to as $mErk2^{CKO}$ ) were viable and fertile. |
| 212 | Western blots of muscle extracts showed a ~90% reduction in ERK2 levels in $mErk2^{CKO}$                                       |
| 213 | mice (Fig 1A). Full removal of ERK2 from whole muscle tissue was not expected as                                               |
| 214 | myofiber nuclei only represent ~41% of the total nuclei in muscle tissue (36). ERK1                                            |
| 215 | levels in $mErk2^{CKO}$ mutants were ~20% lower than in controls (Fig 1B). As expected,                                        |
| 216 | ERK1 was completely absent in muscle homogenates from germline Erk1 <sup>-/-</sup> mice (Fig                                   |
| 217 | 1C, top panel). Mice lacking both ERK1 and ERK2 in skeletal muscle fibers were                                                 |
| 218 | generated by crossing $ErkI^{-/-}$ and $mErk2^{CKO}$ animals (for details see methods). Skeletal                               |
| 219 | muscle from <i>Hsa-Cre<sup>+/-</sup>; Erk1<sup>-/-</sup>; Erk2<sup>f/f</sup></i> mice (hereafter referred to as DKO) lacked    |
| 220 | ERK1 and had a great reduction of ERK2 as expected (Fig 1C, top panel).                                                        |
| 221 | Phosphorylated ERK2 (pERK2) was diminished to similar extent in both $mErk2^{CKO}$ and                                         |
| 222 | DKO mutants, in direct correspondence to the decrease in total ERK2 (Fig 1C, bottom                                            |
| 223 | panel). The reduction in ERK2 was specific to skeletal muscle as it was not observed in                                        |
| 224 | heart, spinal cord or liver (Fig 1D). However, a ~50% reduction in kidney ERK2 levels                                          |
| 225 | was detected in DKO animals relative to control (Fig 1D).                                                                      |
| 226 | Mice lacking ERK1/2 in skeletal muscle fibers are viable but display stunted                                                   |
| 227 | postnatal growth, muscle weakness and shorter lifespan.                                                                        |

| <u> </u> |            |
|----------|------------|
| Ъ        |            |
| Cell     |            |
| 0        | 2          |
| E        | <u>_</u>   |
| ar       | <u>B</u> . |
| ecul     |            |
| Mol      |            |

| 228 | DKO animals were born at the expected Mendelian ratios predicted from the                                                                                                   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 229 | crosses. Thus, from the cross <i>Hsa-Cre<sup>-/-</sup>; Erk1<sup>-/-</sup>; Erk2<sup>f/f</sup></i> x <i>Hsa-Cre<sup>+/-</sup>; Erk1<sup>+/-</sup>; Erk2<sup>f/f</sup></i> , |
| 230 | 78/317 pups (i.e. the expected $\frac{1}{4}$ ) showed the <i>Hsa-Cre</i> <sup>+/-</sup> ; <i>Erk1</i> <sup>-/-</sup> ; <i>Erk2</i> <sup>f/f</sup> genotype when             |
| 231 | assayed post-weaning. We followed their weight starting at week 4 after birth. Starting at                                                                                  |
| 232 | week 7, we also assayed muscle strength and overall motor coordination and fatigue                                                                                          |
| 233 | resistance by measuring forelimb grip strength and by subjecting mice to a rotarod                                                                                          |
| 234 | protocol, respectively. Muscle ERK2-deficient, and germline ERK1-deficient mice                                                                                             |
| 235 | showed no difference in weight progression and forelimb grip strength relative to control                                                                                   |
| 236 | animals ( <i>Hsa-Cre<sup>-/-</sup>; Erk1<sup>+/+</sup>; Erk2<sup>f/f</sup></i> ), whereas DKO mutants failed to gain weight and                                             |
| 237 | showed a progressive loss of grip strength as young adults (Fig 2A and B). Interestingly,                                                                                   |
| 238 | double mutants could be divided into two groups according to how fast they lost weight                                                                                      |
| 239 | (Fig 2A). "Severe" animals lost weight rapidly starting at about 7 weeks of age, while                                                                                      |
| 240 | "mild" double mutants were able to keep their weight at that age but clearly failed to keep                                                                                 |
| 241 | up with controls or single mutants (Fig 2A). We currently do not understand the basis of                                                                                    |
| 242 | this differential effect on weight. When normalized to body weight, both types of DKO                                                                                       |
| 243 | mutants showed very similar reduction of grip strength (Fig 2B). "Severe" mice were not                                                                                     |
| 244 | tested with the rotarod due to their overall frailty. However, "mild" DKO mice displayed                                                                                    |
| 245 | a clear tendency to fall earlier from an accelerating rotarod (Fig 2C). DKO mutants do                                                                                      |
| 246 | not survive as long as controls or single mutants. Their deaths were either sudden and                                                                                      |
| 247 | unexplained or followed weight loss of such severity that demanded humane euthanasia                                                                                        |
| 248 | according to protocol guidelines. Their median lifespans were: 71 days, n=23 (severe);                                                                                      |
| 249 | 121 days, n=7 (mild). (Fig 2D). Interestingly, all 5 registered deaths among the "mild"                                                                                     |
| 250 | DKO animals were males, while the 2 females remained alive. Kyphosis, a sign of                                                                                             |
|     |                                                                                                                                                                             |

muscle weakness, was clearly evident in the long-surviving animals (Fig 2E) and in at
least one of the males that lived for 120 days. Thus, these results suggest that muscle
depletion of either ERK1 or ERK2 has no overt phenotypic effects on the mice and that

ERK1 and ERK2 together are required for myofiber postnatal maintenance or growth.

#### 255 Extensive fragmentation of the mature NMJ in ERK1/2-deficient muscle.

256 These studies were prompted by our previous results with cultured myotubes. We 257 found that agrin stimulated the transient activation of ERK1/2 in an LDL receptor related 258 protein 4 (Lrp4)/muscle-specific kinase (MuSK)-dependent fashion. Pharmacological 259 blockade of this activation failed to inhibit agrin-induced acetylcholine receptor (AChR) 260 clustering. Instead, it potentiated it by  $\sim 60\%$ . These, and other observations, led us to 261 propose that agrin-induced ERK1/2 activation is part of a feedback loop that keeps 262 agrin's clustering activity in check, at least *in vitro* (18). The fact that the DKO mice are 263 viable and appear normal well after NMJs have formed and matured suggests that this 264 ERK-dependent feedback mechanism is dispensable for the formation of the NMJ in 265 vivo. However, it was still possible that ERK signaling had some role in NMJ 266 maintenance, especially in light of the overall postnatal muscle weakness of the DKO 267 mice (Fig 2). We stained whole mounts of the neck sternomastoid (STN) muscle in 268 control and DKO young adults for pre- and postsynaptic markers and examined the 269 samples under confocal microscopy. The STN has been used by others to study the 270 effects of aging and amyotrophic lateral sclerosis (ALS) on the structure of the mature 271 NMJ (37-39). In control muscle, the NMJs exhibited their characteristic "pretzel" shape 272 with long, continuous domains of postsynaptic AChRs labeled by  $\alpha$ -bungarotoxin (BTX) 273 tightly apposed by nerve terminals labeled by synaptophysin (SYN) (Fig 3A). In STN

274 DKO muscles, many NMJs looked very fragmented with small, mostly round AChR

275 domains variably apposed to nerve terminal staining (Fig 3B,C). This synaptic

276 fragmentation, reminiscent of NMJs in aged normal animals (37, 38, 40), mdx and

277 utrophin/dystrophin knockout mice (41, 42), was observed in males and females from

both "severe" and "mild" DKO muscle (Fig 3B,C).

279 Lack of myofiber ERK2 is sufficient to observe extensive synaptic fragmentation in
280 the sternomastoid muscle.

281 Next we sought to explore whether synaptic fragmentation required the deficiency 282 of both muscle ERK1 and ERK2, or whether the lack of only one of these two kinases was sufficient for this phenotype. STNs from control (*Hsa-Cre<sup>-/-</sup>; Erk1<sup>+/+</sup>; Erk2<sup>f/f</sup>*), *Erk1<sup>-/-</sup>* 283 , *mERK2<sup>CKO</sup>* and "mild" DKO young adults were dissected, stained and imaged by 284 285 confocal microscopy as above. We chose to work with the "mild" DKO animals because 286 they survive longer and displayed an overall better health than the "severe" DKO mice. 287 The number of AChR domains per endplate was quantified on NMJs viewed "en face". 288 For animals between 3 to 6 months of age, the average number of AChR domains per 289 endplate was  $7.26 \pm 0.38$  for control (n=85 NMJs, 5 mice),  $12.15 \pm 1.69$  for DKO (n=52 NMJs, 3 mice),  $8.38 \pm 0.94$  for  $Erk1^{-/-}$  (n=80 NMJs, 4 mice) and  $12.93 \pm 0.91$  for 290 *mErk2<sup>CKO</sup>* (n=90 NMJs, 6 mice). Thus, endplates from DKO and *mErk2<sup>CKO</sup>*, but not *Erk1<sup>-</sup>* 291 292 <sup>-/-</sup> STN had significantly more AChR fragments on average than control. We plotted the 293 percentage of NMJs vs. the number of AChR domains (in bins of 5) for each genotype 294 (Fig 4A). While a shift to NMJs with larger number of AChR fragments could be 295 appreciated for all 3 mutants, the most striking observation was that NMJs with more

than 20 AChR domains were only found in DKO and *mErk2<sup>CKO</sup>* STN, not in control or

| 297                                           | $ErkI^{-/-}$ muscle (Fig 4A). These highly fragmented endplates constituted up to 20% of                                                                                                                                                                                    |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 298                                           | total NMJs in the <i>mErk2<sup>CKO</sup></i> STN (Fig 4A). Statistical comparison of the mutant                                                                                                                                                                             |
| 299                                           | distributions relative to control using the Wilcoxon Rank Sum test showed that only the                                                                                                                                                                                     |
| 300                                           | DKO and <i>mErk2<sup>CKO</sup></i> distributions were significantly different than control (DKO vs.                                                                                                                                                                         |
| 301                                           | control: p=0.000003; $mErk2^{CKO}$ vs. control: p=0.000002; $Erk1^{-/-}$ vs. control: p=0.05).                                                                                                                                                                              |
| 302                                           | Furthermore, statistical comparison using the same test of the DKO vs. the $mErk2^{CKO}$                                                                                                                                                                                    |
| 303                                           | distributions showed no difference between them (p=0.88). Lastly, as an additional                                                                                                                                                                                          |
| 304                                           | control we quantified AChR domains/NMJ in STN from Hsa-Cre <sup>+/-</sup> driver mice. We                                                                                                                                                                                   |
| 305                                           | found an average of $5.96 \pm 0.57$ (n=77 NMJs, 2 mice), slightly lower than our control. An                                                                                                                                                                                |
| 306                                           | example of a highly fragmented synapse in <i>mERK2<sup>CKO</sup></i> STN is shown in Fig 5A.                                                                                                                                                                                |
| 307                                           | Therefore, lack of muscle ERK2 is sufficient to yield extensive synaptic fragmentation in                                                                                                                                                                                   |
| 308                                           | the STN.                                                                                                                                                                                                                                                                    |
| 309                                           | Differential sensitivity to the lack of ERK2 between different muscles.                                                                                                                                                                                                     |
| 310                                           | Next we studied synapse morphology in the hind limb tibialis anterior (TA)                                                                                                                                                                                                  |
| 311                                           | muscle, which was also used recently to study effects of aging on the NMJ (40, 43). The                                                                                                                                                                                     |
| 312                                           | TA showed a different response than the STN (Fig 4B). First, control NMJs were much                                                                                                                                                                                         |
| 313                                           | less fragmented in the TA than the STN to begin with. Average AChR domains per                                                                                                                                                                                              |
| 314                                           | endplate in control TA were $3.85 \pm 0.25$ (n=65, 4 mice). Second, NMJs in <i>mErk2<sup>CKO</sup></i> and                                                                                                                                                                  |
| 315                                           | Erk1 <sup>-/-</sup> TA muscles appeared on average as fragmented as control. The former had a mean                                                                                                                                                                          |
|                                               |                                                                                                                                                                                                                                                                             |
| 316                                           | of 4.30 $\pm$ 0.25 AChR domains/endplate (n=112 NMJs, 5 mice), and the latter had 4.91 $\pm$                                                                                                                                                                                |
| 316<br>317                                    | of $4.30 \pm 0.25$ AChR domains/endplate (n=112 NMJs, 5 mice), and the latter had $4.91 \pm 0.52$ (n=32 NMJs, 2 mice). Third, only DKO endplates displayed statistically significant                                                                                        |
| <ul><li>316</li><li>317</li><li>318</li></ul> | of $4.30 \pm 0.25$ AChR domains/endplate (n=112 NMJs, 5 mice), and the latter had $4.91 \pm 0.52$ (n=32 NMJs, 2 mice). Third, only DKO endplates displayed statistically significant fragmentation as their average number of AChR domains/endplate rose to $6.46 \pm 0.75$ |

| 320 | 15 AChR domains were never seen in control or <i>Erk1<sup>-/-</sup></i> muscle, were extremely rare in |
|-----|--------------------------------------------------------------------------------------------------------|
| 321 | mERK2 <sup>CKO</sup> TA and reached less than 10% of the junctions in DKO muscle. Fifth, NMJs          |
| 322 | with more than 20 AChR fragments, which were easily detected in <i>mErk2<sup>CKO</sup></i> and DKO     |
| 323 | STN, were absent from the sampled TA junctions, at these ages or even at 9-months of                   |
| 324 | age (data not shown). An example of a control and a highly fragmented NMJ in DKO TA                    |
| 325 | are shown in Figure 5B & C, respectively. Thus at the ages studied, the NMJs of STN                    |
| 326 | and TA displayed differential intrinsic fragmentation and a differential sensitivity to the            |
| 327 | lack of myofiber ERK1/2.                                                                               |
| 328 | In order to account for the inherent differences in fragmentation of control NMJs                      |
| 329 | between STN and TA that our data reveal (Fig 4), we propose that a fragmented NMJ                      |
| 330 | could be defined as one having more AChR domains than the control median. The                          |
| 331 | median number of AChR domains were 7 and 3, for control NMJs in STN and TA,                            |
| 332 | respectively. Using this criterion, synaptic fragmentation becomes a predominant feature               |
| 333 | in the majority of NMJs from DKO muscle as $\sim$ 70% of the sampled NMJs had more                     |
| 334 | AChR domains than their respective control medians. Thus, 71.15% (37/52) and 67.57%                    |
| 335 | (25/37) NMJs in DKO STN and TA showed more than 7 and 3 AChR domains,                                  |
| 336 | respectively. This high-level of fragmentation above control median was also reached in                |
| 337 | the $mErk2^{CKO}$ STN (66.67%; 60/90).                                                                 |
| 338 | Absence of central myonuclei in muscle ERK2-deficient sternomastoid                                    |
| 339 | Others have suggested that synaptic fragmentation in aging and dystrophic muscle                       |
| 340 | is due to degeneration/regeneration cycles in the synaptic portion of the muscle fiber (38,            |

- 41). We sought to determine if the same was happening in  $mErk2^{CKO}$  and DKO muscle.
- 342 Nuclei within normal muscle fibers localize towards the periphery of the cell, adjacent to

| 343 | the sarcolemma. Muscle fiber damage induces degeneration of the old fibers and                 |
|-----|------------------------------------------------------------------------------------------------|
| 344 | regeneration of new ones, which are derived from satellite cells, muscle stem cells            |
| 345 | present in the tissue (44). A hallmark of this process is the accumulation of myonuclei        |
| 346 | towards the center of the cell. We counted fibers with central nuclei in transverse sections   |
| 347 | of STN stained for hematoxylin & eosin (H&E). Numbers of myofibers with central                |
| 348 | nuclei in control, $Erk1^{-/-}$ and $mErk2^{CKO}$ STN did not differ from each other, hovering |
| 349 | around 2% (Fig 6). DKO STN had more fibers with central nuclei than control, but they          |
| 350 | only reached about 4% of the total (Fig 6). Experiments with Evans blue dye confirmed          |
| 351 | sarcolemma integrity in $mErk2^{CKO}$ muscle (data not shown). Thus NMJ fragmentation          |
| 352 | was prominent in the $mErk2^{CKO}$ STN despite it having the same percentage of fibers with    |
| 353 | central nuclei as control. Moreover, a doubling in the number of fibers with central nuclei    |
| 354 | in the DKO STN did not enhance NMJ fragmentation quantitatively (Fig 4A).                      |

## 355 ERK1/2 regulate AChR levels at the NMJ.

356 In addition to the synaptic fragmentation studied above, we observed that about a 357 third of NMJs in DKO muscles had relatively weak or sometimes faint BTX staining 358 even in the presence of strong nerve terminal staining (Fig 7A). Quantification showed that only  $\sim 6\%$  of control NMJs, but  $\sim 29\%$  and  $\sim 38\%$  of endplates in DKO STN and TA 359 360 respectively, showed dim AChR stain (Fig 7B). While the fraction of endplates from Erk1<sup>-/-</sup> muscle with dim AChR staining was similar to control, it tended to be higher in 361 *mErk2*<sup>CKO</sup> muscles, but only reached statistical significance in DKO samples (Fig 7B; 362 p=0.03 STN; p=0.006 TA). To check if this apparent reduction in surface AChR protein 363 364 levels was accompanied by a decrease in mRNA levels of its encoding subunit genes, we

365 used real-time PCR to measure steady state levels for the four genes that encode the adult

| Accepted M                   |  |
|------------------------------|--|
| ular and Cellular<br>Biology |  |

MCB

| 368 | by the 2 <sup>-DeltaDeltaCt</sup> method (46) and values were normalized to the Ct values obtained for |
|-----|--------------------------------------------------------------------------------------------------------|
| 369 | control muscle for each gene (Fig 7C). We found that Chrne mRNA was consistently                       |
| 370 | reduced almost 2-fold in both <i>mErk2<sup>CKO</sup></i> and DKO muscle. The reduction was             |
| 371 | statistically significant in DKO TA and mErk2 <sup>CKO</sup> STN and TA, but was borderline            |
| 372 | (p=0.05) in the DKO STN (Fig 7C). Chrnd mRNA levels were essentially similar to                        |
| 373 | control regardless of genotype or muscle examined (Fig 7C). Chrna and Chrnb mRNAs                      |
| 374 | tended to be slightly lower than control in $mErk2^{CKO}$ and DKO TA, while they tended to             |
| 375 | increase particularly in the DKO STN (Fig 7C). Lack of only ERK1 did not affect the                    |
| 376 | mRNA levels for the subunits of the adult receptor (Fig 7C), nor was Chrne mRNA                        |
| 377 | different between control and <i>Hsa-Cre</i> <sup>+/-</sup> driver muscle (data not shown). Thus, a    |
| 378 | somewhat selective, muscle-ERK2-dependent reduction in mRNA Chrne expression was                       |
| 379 | observed. We next checked if the expression of AChRɛ protein was also affected in DKO                  |
| 380 | mice. We affinity-purified AChRs from lysates of control and DKO TA muscle using                       |
| 381 | biotinylated BTX and streptavidin-agarose and probed for AChR $\varepsilon$ subunit by Western         |
| 382 | blotting. In the DKO TA there was as highly-statistically significant decrease in Chrne                |
| 383 | mRNA (Fig 7C). AChRe protein in DKO TA was ~2-3-fold lower than in control                             |
| 384 | (p=0.03, Fig 8). Chrne, the gene encoding the AChRɛ subunit indicative of the adult                    |
| 385 | receptor is transcribed almost exclusively at the synaptic site (47), so its transcription             |
| 386 | reflects the production of the synaptic AChR protein. Taken together, the weaker AChR                  |
| 387 | staining at about a third of DKO NMJs, the decrease in AChRE protein demonstrated in                   |
|     |                                                                                                        |

AChR (45). Cycle threshold (Ct) values obtained for 18S rRNA were used to equalize

differences in total RNA per sample (26). Transcript level fold-change was determined

366

| 388 | the DKO TA, and the reduction in <i>Chrne</i> mRNA levels in <i>mErk2<sup>CKO</sup></i> and DKO muscle |
|-----|--------------------------------------------------------------------------------------------------------|
| 389 | suggest that ERK1/2 regulate expression of the synaptic AChR.                                          |
| 390 | Most prominently in DKO STN, we observed NMJs with AChR patches without                                |
| 391 | overlying SYN staining (i.e. aneural AChR patches, Fig 3) and evidence of nerve                        |
| 392 | terminal sprouting (as illustrated in Fig 7A, top panel). Thus, 45% NMJs (18/40, 3 mice)               |
| 393 | in the DKO STN, while 16% in control STN (6/38, 4 mice) had terminal sprouts. Because                  |
| 394 | these morphological features are hallmarks of partial denervation (48), we next used real-             |
| 395 | time PCR to check for mRNA levels for <i>Chrng</i> , the gene encoding the distinctive AChR $\gamma$   |
| 396 | subunit of the fetal AChR (45), which is strongly induced by functional denervation in                 |
| 397 | the adult (49). Chrng mRNA levels were similar to control in TA muscle from all three                  |
| 398 | mutant genotypes. However, Chrng mRNA was moderately increased in mErk2 <sup>CKO</sup> STN             |
| 399 | (2-fold) and reached 40-fold induction in the DKO STN (Fig 7D). mRNA for Runx1 and                     |
| 400 | the embryonic myosin heavy chain Myh3, two other genes strongly induced by                             |
| 401 | denervation (50), were also selectively increased in DKO STN (Fig 7E). The sharp                       |
| 402 | increases in these denervation markers in the DKO STN, but not the DKO TA, were                        |
| 403 | consistent with the trend towards elevated mRNA levels for Chrna, Chrnb and Chrnd in                   |
| 404 | the DKO STN, but not in the DKO TA (Fig 7C), as these AChR genes are also induced                      |
| 405 | by denervation (51). Thus, together these results suggest that loss of myofiber ERK1/2 led             |
| 406 | to significant partial denervation selectively in the STN.                                             |
| 407 | Myofiber number, size and type effects.                                                                |
| 408 | Lastly, we studied myofiber number, size and type in STN and TA muscles to                             |

410 and the synapse maintenance phenotypes described above. Cross sections from the belly

determine whether there was a correlation between potential changes in these parameters

| 411 | of the muscles were co-stained for dystrophin, to mark the boundaries of individual               |
|-----|---------------------------------------------------------------------------------------------------|
| 412 | myofibers, and for the 4 canonical myosin heavy chain (MyHC) isoforms that define                 |
| 413 | adult fiber types (1, 2A, 2B, 2X) (52). Dystrophin was present on the surface of muscle           |
| 414 | fibers of these DKO muscles just as it was in controls and single Erk mutants (Fig 9              |
| 415 | A,B). Total number of fibers per TA cross section were similar across all four genotypes,         |
| 416 | while there was a statistically significant 21% reduction in fiber numbers limited to the         |
| 417 | DKO STN (p=0.02, Fig 9C). DKO STN and TA showed modest average fiber atrophy                      |
| 418 | (~14% and ~11%, respectively) that was statistically significant for the DKO TA                   |
| 419 | (p=0.008, Fig 9D). The $Erk1^{-/-}$ and $mErk2^{CKO}$ muscles tended to have slightly             |
| 420 | hypertrophied fibers on average compared to controls (Fig 9D). Thus, the modest fiber             |
| 421 | atrophy in both TA and STN together with the fiber loss in the STN, are consistent with           |
| 422 | the lower weight of DKO animals relative to controls (Fig 2A). We sought to determine             |
| 423 | the fiber type composition of the STN and TA in our $Erk1/2$ mutant mice. In the adult            |
| 424 | mouse, STN and TA are predominantly fast-fiber muscles (53-55). Our experiments                   |
| 425 | confirmed these published observations as our control and 3 mutant STN and TA muscles             |
| 426 | had a maximum of 0.2% type 1 fibers (data not shown). Analysis of MyHC staining in                |
| 427 | STN showed ERK1-lacking mice were similar to controls in the distribution of fast fibers          |
| 428 | (2A, 2B, 2X) (Fig 9E). There was a tendency towards fewer 2B and more 2A fibers than              |
| 429 | control in DKO STN that did not reach statistical significance (Fig 9E). mErk2 <sup>CKO</sup> and |
| 430 | DKO STN displayed a statistically significant $\sim$ 7% increase in 2X fibers (p=0.004 and        |
| 431 | p=0.03, respectively, Fig 9E). Although the variability in the data prevents a clear-cut          |
| 432 | conclusion, this slight increase in 2X fibers seems to be at the expense of 2B fibers.            |
| 433 | Mutant TA was no different to control regarding fast fibers (Fig 9F). Thus the analysis of        |

| 435 | type composition due to lack of muscle ERK1/2. Consistent with this conclusion, and                                                                                                                                                                                            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 436 | with its proposed role in regulating fiber type composition (56), levels of active p38                                                                                                                                                                                         |
| 437 | MAPK were unaltered in DKO muscle relative to control (Fig 10). Active c-jun NH <sub>2</sub> -                                                                                                                                                                                 |
| 438 | terminal kinase (JNK) levels in DKO were also statistically similar to control. Fold                                                                                                                                                                                           |
| 439 | change vs. control: STN p46JNK: 0.99±0.10; STN p54JNK: 0.52±0.05; TA p46JNK:                                                                                                                                                                                                   |
| 440 | 1.79±0.76; TA p54JNK: 0.55±0.19.                                                                                                                                                                                                                                               |
| 441 | DISCUSSION                                                                                                                                                                                                                                                                     |
| 442 | We have for the first time selectively abrogated ERK1/2 in skeletal muscle fibers.                                                                                                                                                                                             |
| 443 | We found that ERK1/2 are needed for the maintenance of myofibers and NMJs. DKO                                                                                                                                                                                                 |
| 444 | animals displayed stunted postnatal growth, muscle weakness and shorter lifespan. The                                                                                                                                                                                          |
| 445 | muscles examined here, STN and TA, displayed a combination of modest fiber atrophy                                                                                                                                                                                             |
| 446 | and loss without major changes in fiber type composition or absence of cell surface                                                                                                                                                                                            |
| 447 | dystrophin. Loss of myofiber ERK1/2 yielded both overlapping and distinct changes in                                                                                                                                                                                           |
| 448 | synaptic morphology and AChR gene expression that depended on the muscle studied.                                                                                                                                                                                              |
| 449 | Whereas lack of only ERK1 had no apparent effects on the phenotypes studied, lack of                                                                                                                                                                                           |
| 450 | myofiber ERK2 explained synaptic fragmentation in the STN, but not the TA, and a                                                                                                                                                                                               |
| 451 | decrease in the expression of Chnre mRNA in both muscles. A corresponding reduction                                                                                                                                                                                            |
| 452 | in AChR protein was documented in the TA. Evidence of partial denervation was also                                                                                                                                                                                             |
| 453 | found in the STN but not the TA. Thus, myofiber ERK1/2 are differentially required for                                                                                                                                                                                         |
| 454 | the maintenance of myofibers and neuromuscular synapses in adult mice.                                                                                                                                                                                                         |
|     | <ul> <li>435</li> <li>436</li> <li>437</li> <li>438</li> <li>439</li> <li>440</li> <li>441</li> <li>442</li> <li>443</li> <li>444</li> <li>445</li> <li>446</li> <li>447</li> <li>448</li> <li>449</li> <li>450</li> <li>451</li> <li>452</li> <li>453</li> <li>454</li> </ul> |

the predominantly fast-twitch muscles STN and TA showed only modest changes in fiber

455 The cause/effect relationship between muscle weakness and stunted growth in the 456 DKO mice is unclear. One possibility is that muscles involved in mastication and

434

| 457 | swallowing become weak leading to reduced food intake and weight loss. Although the       |
|-----|-------------------------------------------------------------------------------------------|
| 458 | weight loss of the DKO mice correlated with the combined muscle fiber loss and atrophy    |
| 459 | observed in their STN and TA muscles, it is possible minor renal problems might have      |
| 460 | also contributed to this phenotype. Kidneys from DKO mice had about half ERK2 levels      |
| 461 | than control (Fig 1D). However, only a few isolated single cells in adult kidney tissue   |
| 462 | express a LacZ reporter that is driven by the same Hsa-Cre mice used here                 |
| 463 | (http://www.informatics.jax.org/recombinase/specificity?id=MGI:2447635&systemKey=         |
| 464 | 4856358). It is unlikely that this low level of expression accounts for the 50% reduction |
| 465 | in kidney ERK2 in DKO mice. This reduction, and perhaps any ensuing renal                 |
| 466 | complications, may be secondary effects stemming from the overall muscle weakness.        |
| 467 | We do not know why the DKO mice die. All of the DKO mild animals that die were            |
| 468 | males while the surviving ones were females. One of the male DKO mild animals that        |
| 469 | died at 16 weeks of age displayed kyphosis and showed compromised respiration before      |
| 470 | humane euthanasia. However, other animals died younger and failed to exhibit              |
| 471 | respiratory distress or kyphosis that was evident to the naked eye. Moreover, the         |
| 472 | surviving DKO mild females show clear kyphosis (Fig 2E). Future experiments will be       |
| 473 | needed to clarify these issues.                                                           |
| 474 | There was an intrinsic difference in fragmented NMJs between control STN and              |
| 475 | TA muscles. The average NMJ in control STN had about twice the number of AChR             |
| 476 | domains than the average NMJ in control TA. This correlated with the sensitivity to NMJ   |
| 477 | fragmentation in these muscles following the reduction in ERK1/2. Even after abrogation   |
| 478 | of myofiber ERK1/2, this difference was maintained as the most fragmented synapses        |
| 479 | occurred in the STN and not the TA. It remains possible that these differences disappear  |

| X                | 482 | that s |
|------------------|-----|--------|
| oteo             | 483 | fragr  |
| Cep              | 484 | could  |
| Ă                | 485 | muse   |
|                  | 486 | defin  |
|                  | 487 | fragr  |
|                  | 488 | fragr  |
|                  | 489 | appa   |
| ar               | 490 | Li ar  |
| l Cellu<br>Y     | 491 | doma   |
| ar and<br>3iolog | 492 | that   |
| olecula          | 493 | geno   |
| X                | 494 | patcl  |
|                  | 495 | lowe   |
|                  |     |        |

| 480 | in older animals. Wild type TA and STN muscles showed no difference in NMJ                         |
|-----|----------------------------------------------------------------------------------------------------|
| 481 | fragmentation when examined at 2 years of age (39). However, synaptic fragmentation in             |
| 482 | that study was defined differently than here. To account for the intrinsic differences in          |
| 483 | fragmentation of control NMJs in various muscles, we propose that a fragmented NMJ                 |
| 484 | could be defined as one having more AChR domains than the control median. In control               |
| 485 | muscle, the frequency of fragmented synapses using this criterion will always be by                |
| 486 | definition 50% at most. Two other groups previously used a threshold of AChR                       |
| 487 | fragments to define a fragmented NMJ. Valdez and colleagues (39, 40), defined a                    |
| 488 | fragmented NMJ as one having 5 or more AChR islands or a segment of the postsynaptic               |
| 489 | apparatus with severe abnormalities such as a small or irregularly shaped AChR cluster.            |
| 490 | Li and co-workers (38) defined a fragmented NMJ as one having 10 or more AChR                      |
| 491 | domains. When applied to our data, the Valdez criterion suggests the puzzling conclusion           |
| 492 | that most of the NMJs in control STN are fragmented. In this regard, our control                   |
| 493 | genotype was not wild type for Erk2; it was Erk2 <sup>f/f</sup> . Because the average AChR         |
| 494 | patches/NMJ in the STN from the Cre driver mice (genotype $Erk1^{+/+}$ ; $Erk2^{+/+}$ ) was a bit  |
| 495 | lower than in our control STN, it is possible that the $Erk2^{f}$ allele might have a small effect |
| 496 | on fragmentation. Li and colleagues studied the STN and their more stringent criterion             |
| 497 | perhaps resulted from studying this muscle, whose synapses appear particularly prone to            |
| 498 | fragmentation. This criterion was rather uninformative for our experiments in the TA               |
| 499 | because it sets the threshold for fragmentation ( $\geq 10$ fragments) even above the average      |
| 500 | AChR domains per NMJ obtained in the DKO TA (~6.46). Thus we believe our control-                  |
| 501 | median-based criterion, in combination with the statistical analysis in Figure 4, is more          |
|     |                                                                                                    |

| 502 | fitting to define a fragmented NMJ and to account for the intrinsic differences in                         |
|-----|------------------------------------------------------------------------------------------------------------|
| 503 | fragmentation that may occur among synapses in various muscles.                                            |
| 504 | Unlike in the TA, loss of myofiber ERK2 in the STN was sufficient to yield the                             |
| 505 | same levels of synaptic fragmentation as in the DKO (Fig 4). These results were                            |
| 506 | unexplained by higher HSA-Cre-driven ERK2 reduction, or higher ERK1 decrease as a                          |
| 507 | consequence of $Erk2^{l/f}$ recombination in STN than TA (Fig 1). Nor were endogenous                      |
| 508 | levels of ERK2 higher in control TA than in control STN by Western blotting (data not                      |
| 509 | shown). Although ERK1 and ERK2 are generally viewed as functionally redundant, the                         |
| 510 | differential embryonic lethality between their germline mutants and other evidence (57-                    |
| 511 | 59), suggest specific roles for these two kinases in some physiological contexts.                          |
| 512 | Alternatively, the more dramatic phenotypes we find in $mErk2^{CKO}$ animals may simply                    |
| 513 | reflect the higher levels of expression of ERK2 relative to ERK1 in skeletal muscle fibers                 |
| 514 | in general.                                                                                                |
| 515 | The extensive synaptic fragmentation in the $mErk2^{CKO}$ STN failed to correlate to                       |
| 516 | changes in animal weight, forelimb grip strength, survival, fiber number or fiber size,                    |
| 517 | because none of these parameters were different to control. We measured a small increase                   |
| 518 | (~7%) in 2X fibers in the <i>mErk2<sup>CKO</sup></i> STN relative to control. However, it is unlikely that |
| 519 | this accounts for the synaptic fragmentation in this muscle because 67% of the NMJs in                     |
| 520 | the <i>mErk2<sup>CKO</sup></i> STN were fragmented according to our control-median-based criterion.        |
| 521 | Although other general changes in the fibers might be linked to synaptic fragmentation,                    |
| 522 | notably changes in metabolic capacity and generation of reactive oxygen species (ROS)                      |
| 523 | (60), our results suggest that ERK2 regulates mechanisms that locally control synapse                      |
| 524 | maintenance. In this context, NMJ fragmentation by excess ROS needs them produced in                       |

| 525 | motoneurons and not in muscle fibers (61, 62). Hence mechanisms underlying NMJ                    |
|-----|---------------------------------------------------------------------------------------------------|
| 526 | fragmentation by excess ROS and by muscle ERK1/2 deficiency may be fundamentally                  |
| 527 | distinct. There was no correlation between the accumulation of central myonuclei (Fig 6)          |
| 528 | and the synaptic fragmentation phenotype in $mErk2^{CKO}$ and DKO STN (Fig 4A).                   |
| 529 | Postsynaptic mechanisms other than local fiber degeneration/regeneration may account              |
| 530 | for NMJ fragmentation (63). This does not exclude that some of the fragmented NMJs in             |
| 531 | our mutant muscles result from degeneration/regeneration in the subsynaptic area. Our             |
| 532 | measurements of central nuclei were from extrasynaptic regions of the fibers. The                 |
| 533 | relatively small subsynaptic portion of the muscle fiber in mutant muscle could be more           |
| 534 | prone to damage than the rest of the fiber and/or central nuclei could be transient and           |
| 535 | migrate quickly to the periphery of the fiber so that we would miss them in our                   |
| 536 | experiments (38).                                                                                 |
| 537 | NMJs with dimly BTX-stained AChRs were present both in DKO STN and TA,                            |
| 538 | although they were more easily detected in the latter (Fig 7). Fewer AChRs at the                 |
| 539 | synaptic site could be due to one or a combination of the following processes: Lower rate         |
| 540 | of synthesis and/or multimeric assembly, higher rate of degradation, lower insertion rate         |
| 541 | of the receptors in the synaptic sarcolemma or higher retrieval from it. Synthesis depends        |
| 542 | highly on the rate of local transcription. We found a consistent reduction of the AChR $\epsilon$ |
| 543 | subunit gene mRNA, which was myofiber ERK2-dependent (Fig 7C). We also                            |
| 544 | documented a corresponding reduction in AChR $\epsilon$ protein in the DKO TA (Fig 8).            |
| 545 | Transcription of all AChR subunit genes is highly enriched at the subsynaptic myonuclei           |
| 546 | (64–66); however, <i>Chrne's</i> is perhaps the most synaptic of them all (47). Thus, a           |
| 547 | reduction in Chrne mRNA is expected to affect the synaptic AChR selectively. This                 |
|     |                                                                                                   |

| Accepted M                      |  |
|---------------------------------|--|
| lecular and Cellular<br>Biology |  |

| 550 | reduction in whole <i>mErk2<sup>CKO</sup></i> and DKO muscle <i>Chrne</i> mRNA may underestimate the |
|-----|------------------------------------------------------------------------------------------------------|
| 551 | reduction at those NMJs with faint AChR staining (Fig 7B). Dominant-negative mutants                 |
| 552 | for Ras, Raf and MEK1 selectively inhibited synapse-specific expression of Chrne-                    |
| 553 | luciferase reporters that were expressed in adult TA muscle following DNA injection                  |
| 554 | (23). These experiments suggested that ERK signaling regulates Chrne expression at the               |
| 555 | transcriptional level. Our data showing parallel reductions in both AChRE protein and                |
| 556 | mRNA are consistent with this mechanism for the role of ERK in controlling Chrne                     |
| 557 | expression.                                                                                          |
| 558 | The presence of terminal sprouts and of AChR patches lacking apposing nerve                          |
| 559 | terminal staining in some NMJs from DKO STN is consistent with the significant                       |
| 560 | increase in Chrng mRNA and suggests that a relevant proportion of NMJs in this muscle                |
| 561 | are at least functionally denervated. This effect explains the tendency towards increased            |
| 562 | levels of Chrna, Chrnb and Chrnd mRNA in the DKO STN (Fig 7C), as denervation is                     |
| 563 | well known to induce expression of these AChR subunit genes along the entire muscle                  |
| 564 | fiber (51). It might also explain why Chrne mRNA levels in the DKO STN were just                     |
| 565 | borderline different than control (p=0.05), while those in $mErk2^{CKO}$ STN were                    |
| 566 | significantly lower (p<0.05, Fig 8C). This was not observed in the DKO TA, which                     |
| 567 | highlights another important distinction in the response to the lack of myofiber ERK1/2              |
| 568 | between these two muscles. Unlike synaptic fragmentation in the STN, full expression of              |
| 569 | this partial denervation-like effect required removal of both ERK1 and ERK2. This                    |

reduction was not due to general fiber atrophy as it was detected in  $mErk2^{CKO}$  muscle,

which was no different to control regarding fiber morphology (Fig 9). The ~2-fold

570 suggests that synaptic fragmentation and the apparent denervation are not tightly

548

| 572 | the DKO STN (Figs 9 & 6) could account, at least in part, for the upregulation of Chrng   |
|-----|-------------------------------------------------------------------------------------------|
| 573 | in this muscle, as increased AChR expression was observed in regenerating muscle (67).    |
| 574 | In this context, complete denervation is rare in NMJs from aged normal STN, however,      |
| 575 | partial denervation, terminal sprouts and aneural AChRs were detected (38, 39). Changes   |
| 576 | in Chrng in aged normal STN have not been studied, however, increases in expression of    |
| 577 | Chrng and other denervation markers were reported in aged normal quadriceps (68), and     |
| 578 | seemed unaccompanied by motoneuron loss (69).                                             |
| 579 | The significant fiber loss that we observed in the DKO STN, together with the             |
| 580 | mild fiber atrophy in DKO STN and TA, are consistent with a role for ERK1/2 in            |
| 581 | maintaining skeletal muscle mass, and with prior studies that suggested so in C2C12 cells |
| 582 | and rats (9). On the other hand, our analysis of fiber type composition in the STN and TA |
| 583 | disagrees with the notion that ERK1/2 are essential to preserve the fast-twitch fiber     |
| 584 | phenotype as previously proposed (10). To inactivate ERK1/2 signaling in vivo, the latter |
| 585 | study used overexpression of MAPK phosphatase -1 (MKP-1) by electroporation of adult      |
| 586 | mouse muscle. However, MKP-1 not only inactivates ERK1/2 but actually shows               |
| 587 | substrate preference for other MAPKs such as JNK and p38 (56). Thus, the in vivo          |
| 588 | effects on fast fiber expression reported in this study could have been unspecific to the |
| 589 | inactivation of pERK1/2. Others have posited that ERK1/2 are critical to promote slow-    |
| 590 | fiber differentiation (11). Because the STN and TA muscles studied here bear such a low   |
| 591 | fraction of type 1 fibers, compelling conclusions about the role of ERK1/2 on the slow    |
| 592 | fiber phenotype from our animals will have to wait until we examine muscles with          |
| 593 | significant content of type 1 fibers such as the soleus.                                  |
|     |                                                                                           |

correlated. The fiber loss and the increased proportion of regenerating fibers detected in

| 594 | Intrinsic distinctions in the normal development and maintenance of NMJs among             |
|-----|--------------------------------------------------------------------------------------------|
| 595 | different muscles were described (70), and might underlie the differences in the response  |
| 596 | of the NMJs in STN and TA to the lack of myofiber ERK1/2. Thus, the STN is a delay         |
| 597 | synapsing muscle while the TA is a fast synapsing one (70). Muscles display differential   |
| 598 | susceptibility to sarcopenia and to neuromuscular diseases. Some are highly affected       |
| 599 | while others appear resistant. In many cases, these muscle-selective effects include how   |
| 600 | their NMJs react to these conditions (39, 71, 72). The mechanisms underlying these         |
| 601 | unique sensitivities remain elusive and are likely to be complex and condition-specific.   |
| 602 | Reduction in active ERK1/2 levels with aging were reported in specific muscles of the rat  |
| 603 | (13). Significant skeletal muscle abnormalities (16, 17) were found in patients suffering  |
| 604 | from a group of genetic conditions collectively known as RASopathies, in which             |
| 605 | different components of the Ras/MAPK pathway are anomalously activated (15).               |
| 606 | Recently, patients with deletions encompassing MEK2 were shown to have overlapping         |
| 607 | features with RAS<br>opathies, which suggests that haploin<br>sufficiency of Ras-Erk $1/2$ |
| 608 | pathway components is a potential novel mechanism underlying these disorders (73). Our     |
| 609 | results showing that myofiber-derived ERK1/2 are necessary for the maintenance/growth      |
| 610 | of adult muscle fibers and for the stability of their NMJs in a muscle-specific fashion    |
| 611 | further support an important role for this signaling pathway in muscle-selective           |
| 612 | sarcopenia and are informative as to relevant neuromuscular phenotypes that may be         |
| 613 | affected by the dysregulation of Ras-ERK signaling in RASopathies.                         |
| 614 | ACKNOWLEDGENTS                                                                             |
| 615 | This work was supported by Public Health Service grant NS077177 from the                   |
| 616 | National Institute of Neurological Disorders and Stroke.                                   |

| 617 | We thank J. Samuel for access to the confocal microscope, R. Miranda for access       |
|-----|---------------------------------------------------------------------------------------|
| 618 | to the real-time PCR machine, S. Balaraman for help with qRT-PCR experiments, R.      |
| 619 | Hastings for making us aware of the AChRE antibody ultimately used here, and W.       |
| 620 | Thompson for critically reading the manuscript. The MyHC monoclonal antibodies        |
| 621 | developed by H. Blau, C. Lucas and S. Schiaffino were obtained from the Developmental |
| 622 | Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by    |
| 623 | The University of Iowa, Department of Biology, Iowa City, IA 52242.                   |
| 624 |                                                                                       |

#### 625 **REFERENCES**

626 1. Yoon S, Seger R. 2006. The extracellular signal-regulated kinase: multiple 627 substrates regulate diverse cellular functions. Growth Factors, 2006/01/06 ed. 628 **24**:21–44. 629 Osborne JK, Zaganjor E, Cobb MH. 2012. Signal control through Raf: in 2. 630 sickness and in health. Cell Res. 22:14–22. Rimer M. 2011. Emerging roles for MAP kinases in agrin signaling. Commun. 631 3. 632 Integr. Biol. 4:143–146. 633 4. Jones NC, Fedorov Y V, Rosenthal RS, Olwin BB. 2001. ERK1/2 is required for 634 myoblast proliferation but is dispensable for muscle gene expression and cell 635 fusion. J. Cell. Physiol. 186:104-15. 636 5. Yokoyama T, Takano K, Yoshida A, Katada F, Sun P, Takenawa T, Andoh T, 637 Endo T. 2007. DA-Raf1, a competent intrinsic dominant-negative antagonist of the Ras-ERK pathway, is required for myogenic differentiation. J Cell Biol, 638 639 2007/05/31 ed. 177:781-793. 640 Li J, Johnson SE. 2006. ERK2 is required for efficient terminal differentiation of 6. 641 skeletal myoblasts. Biochem Biophys Res Commun, 2006/05/30 ed. 345:1425– 642 1433 Cho YY, Yao K, Bode AM, Bergen 3rd HR, Madden BJ, Oh SM, Ermakova 643 7. 644 S, Kang BS, Choi HS, Shim JH, Dong Z. 2007. RSK2 mediates muscle cell 645 differentiation through regulation of NFAT3. J Biol Chem, 2007/01/11 ed. 646 282:8380-8392. Bennett AM, Tonks NK. 1997. Regulation of Distinct Stages of Skeletal Muscle 647 8. 648 Differentiation by Mitogen-Activated Protein Kinases. Science (80-. ). 278:1288-649 1291. 650 9. Shi H, Scheffler JM, Zeng C, Pleitner JM, Hannon KM, Grant AL, Gerrard 651 **DE**. 2009. Mitogen-activated protein kinase signaling is necessary for the 652 maintenance of skeletal muscle mass. Am. J. Physiol. Cell Physiol. 296:C1040-8. 10. Shi H, Scheffler JM, Pleitner JM, Zeng C, Park S, Hannon KM, Grant AL, 653 654 Gerrard DE. 2008. Modulation of skeletal muscle fiber type by mitogen-activated 655 protein kinase signaling. FASEB J, 2008/04/18 ed. 22:2990-3000. 656 11. Murgia M, Serrano AL, Calabria E, Pallafacchina G, Lomo T, Schiaffino S. 657 2000. Ras is involved in nerve-activity-dependent regulation of muscle genes. Nat 658 Cell Biol, 2000/03/09 ed. 2:142-7. Roubenoff R, Hughes VA. 2000. Sarcopenia: current concepts. J. Gerontol. A. 659 12. 660 Biol. Sci. Med. Sci. 55:M716-24. 661 13. Rahnert JA, Luo Q, Balog EM, Sokoloff AJ, Burkholder TJ. 2011. Changes in growth-related kinases in head, neck and limb muscles with age. Exp. Gerontol. 662 663 **46**:282–91. 664 14. Muchir A, Kim YJ, Reilly SA, Wu W, Choi JC, Worman HJ. 2013. Inhibition 665 of extracellular signal-regulated kinase 1/2 signaling has beneficial effects on 666 skeletal muscle in a mouse model of Emery-Dreifuss muscular dystrophy caused 667 by lamin A/C gene mutation. Skelet. Muscle 3:17. 668 15. Tidyman WE, Rauen KA. 2009. The RASopathies: developmental syndromes of 669 Ras/MAPK pathway dysregulation. Curr. Opin. Genet. Dev. 19:230-6.

| 670 | 16. | Tidyman WE, Lee HS, Rauen KA. 2011. Skeletal muscle pathology in Costello            |
|-----|-----|--------------------------------------------------------------------------------------|
| 671 |     | and cardio-facio-cutaneous syndromes: developmental consequences of germline         |
| 672 |     | Ras/MAPK activation on myogenesis. Am. J. Med. Genet. C. Semin. Med. Genet.          |
| 673 |     | <b>157</b> :104–14.                                                                  |
| 674 | 17. | Stevenson DA, Allen S, Tidyman WE, Carey JC, Viskochil DH, Stevens A,                |
| 675 |     | Hanson H, Sheng X, Thompson BA, J. Okumura M, Reinker K, Johnson B,                  |
| 676 |     | Rauen KA. 2012. Peripheral muscle weakness in RASopathies. Muscle Nerve              |
| 677 |     | <b>46</b> :394–399.                                                                  |
| 678 | 18. | <b>Rimer M</b> . 2010. Modulation of Agrin-induced Acetylcholine Receptor Clustering |
| 679 |     | by Extracellular Signal-regulated Kinases 1 and 2 in Cultured Myotubes. J Biol       |
| 680 |     | Chem, 2010/08/11 ed. <b>285</b> :32370–32377.                                        |
| 681 | 19. | McMahan UJ. 1990. The agrin hypothesis. Cold Spring Harb Symp Quant Biol             |
| 682 |     | <b>55</b> :407–418.                                                                  |
| 683 | 20. | Wu H, Xiong WC, Mei L. 2010. To build a synapse: signaling pathways in               |
| 684 |     | neuromuscular junction assembly. Development, 2010/03/11 ed. <b>137</b> :1017–1033.  |
| 685 | 21. | Tansey MG, Chu GC, Merlie JP. 1996. ARIA/HRG regulates AChR epsilon                  |
| 686 |     | subunit gene expression at the neuromuscular synapse via activation of               |
| 687 |     | phosphatidylinositol 3-kinase and Ras/MAPK pathway. J Cell Biol 134:465–476.         |
| 688 | 22. | Altiok N, Altiok S, Changeux JP. 1997. Heregulin-stimulated acetylcholine            |
| 689 |     | receptor gene expression in muscle: requirement for MAP kinase and evidence for      |
| 690 |     | a parallel inhibitory pathway independent of electrical activity. EMBO J 16:717-     |
| 691 |     | 725.                                                                                 |
| 692 | 23. | Si J, Mei L. 1999. ERK MAP kinase activation is required for acetylcholine           |
| 693 |     | receptor inducing activity-induced increase in all five acetylcholine receptor       |
| 694 |     | subunit mRNAs as well as synapse-specific expression of acetylcholine receptor       |
| 695 |     | epsilon-transgene. Brain Res Mol Brain Res 67:18–27.                                 |
| 696 | 24. | Ponomareva ON, Ma H, Vock VM, Ellerton EL, Moody SE, Dakour R,                       |
| 697 |     | Chodosh LA, Rimer M. 2006. Defective neuromuscular synaptogenesis in mice            |
| 698 |     | expressing constitutively active ErbB2 in skeletal muscle fibers. Mol Cell           |
| 699 |     | Neurosci <b>31</b> :334–345.                                                         |
| 700 | 25. | Lutz CM, Kariya S, Patruni S, Osborne MA, Liu D, Henderson CE, Li DK,                |
| 701 |     | Pellizzoni L, Rojas J, Valenzuela DM, others. 2011. Postsymptomatic                  |
| 702 |     | restoration of SMN rescues the disease phenotype in a mouse model of severe          |
| 703 |     | spinal muscular atrophy. J Clin Invest <b>121</b> :3029–3041.                        |
| 704 | 26. | Paez-Colasante X, Seaberg B, Martinez TL, Kong L, Sumner CJ, Rimer M.                |
| 705 |     | 2013. Improvement of Neuromuscular Synaptic Phenotypes without Enhanced              |
| 706 |     | Survival and Motor Function in Severe Spinal Muscular Atrophy Mice Selectively       |
| 707 |     | Rescued in Motor Neurons. PLoS One 8:e75866.                                         |
| 708 | 27. | Pagès G, Guerin S, Grall D, Bonino F, Smith A, Anjuere F, Auberger P,                |
| 709 |     | <b>Pouyssegur J</b> . 1999. Defective Thymocyte Maturation in p44 MAP Kinase (Erk    |
| 710 |     | 1) Knockout Mice. Science (80 ). <b>286</b> :1374–1377.                              |
| 711 | 28. | Selcher JC, Nekrasova T, Paylor R, Landreth GE, Sweatt JD. 2001. Mice                |
| 712 |     | lacking the ERK1 isoform of MAP kinase are unimpaired in emotional learning.         |
| 713 |     | Learn Mem, 2001/02/13 ed. 8:11–19.                                                   |

| <u>o</u>        |     |     |                                                                                       |
|-----------------|-----|-----|---------------------------------------------------------------------------------------|
| CD.             | 714 | 29. | Hatano N. Mori Y. Oh-hora M. Kosugi A. Fujikawa T. Nakai N. Niwa H.                   |
| S               | 715 | _>. | Miyazaki I. Hamaoka T. Ogata M 2003 Essential role for ERK2 mitogen-                  |
| Ĕ               | 716 |     | activated protein kinase in placental development. Genes to Cells 8:847–856.          |
| ō               | 717 | 30  | Saba-El-Leil MK, Vella FD, Vernav B, Voisin L, Chen L, Labrecque N, Ang               |
| $\geq$          | 718 | 20. | SL. Meloche S 2003 An essential function of the mitogen-activated protein             |
| -70             | 719 |     | kinase Erk2 in mouse trophoblast development EMBO Rep. 2003/09/23 ed                  |
| ĕ               | 720 |     | 4.964_968                                                                             |
| <u></u>         | 721 | 31  | Yao Y. Li W. Wu J. Germann UA. Su MS. Kuida K. Boucher DM 2003                        |
| e<br>e          | 722 |     | Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation     |
| ğ               | 723 |     | Proc Natl Acad Sci U S A 2003/10/21 ed <b>100</b> :12759–12764                        |
| $\triangleleft$ | 724 | 32  | Samuels IS, Karlo JC, Faruzzi AN, Pickering K, Herrup K, Sweatt JD, Saitta            |
|                 | 725 | 02. | <b>SC. Landreth GE</b> , 2008. Deletion of ERK2 mitogen-activated protein kinase      |
|                 | 726 |     | identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci, |
|                 | 727 |     | 2008/07/04 ed. <b>28</b> :6983–6995.                                                  |
|                 | 728 | 33. | Miniou P. Tiziano D. Frugier T. Roblot N. Le Meur M. Melki J. 1999. Gene              |
|                 | 729 |     | targeting restricted to mouse striated muscle lineage. Nucleic Acids Res. 27:e27.     |
|                 | 730 | 34. | Cifuentes-Diaz C, Frugier T, Tiziano FD, Lacene E, Roblot N, Joshi V,                 |
|                 | 731 |     | Moreau MH, Melki J. 2001. Deletion of murine SMN exon 7 directed to skeletal          |
|                 | 732 |     | muscle leads to severe muscular dystrophy. J Cell Biol, 2001/03/10 ed. 152:1107-      |
|                 | 733 |     | 1114.                                                                                 |
| L.              | 734 | 35. | Nicole S, Desforges B, Millet G, Lesbordes J, Cifuentes-Diaz C, Vertes D, Cao         |
|                 | 735 |     | ML, De Backer F, Languille L, Roblot N, Joshi V, Gillis JM, Melki J. 2003.            |
| ů j             | 736 |     | Intact satellite cells lead to remarkable protection against Smn gene defect in       |
| pu<br>bu        | 737 |     | differentiated skeletal muscle. J Cell Biol, 2003/05/14 ed. 161:571-582.              |
|                 | 738 | 36. | Escher P, Lacazette E, Courtet M, Blindenbacher a, Landmann L, Bezakova               |
|                 | 739 |     | G, Lloyd KC, Mueller U, Brenner HR. 2005. Synapses form in skeletal muscles           |
|                 | 740 |     | lacking neuregulin receptors. Science <b>308</b> :1920–3.                             |
| Ž               | 741 | 37. | Balice-Gordon RJ. 1997. Age-related chages in neuromuscular innervation.              |
|                 | 742 |     | Muscle Nerve Suppl 5:S83–S87.                                                         |
|                 | 743 | 38. | Li Y, Lee YI, Thompson WJ. 2011. Changes in Aging Mouse Neuromuscular                 |
|                 | 744 |     | Junctions Are Explained by Degeneration and Regeneration of Muscle Fiber              |
|                 | 745 |     | Segments at the Synapse. J Neurosci <b>31</b> :14910–14919.                           |
|                 | 746 | 39. | Valdez G, Tapia JC, Lichtman JW, Fox MA, Sanes JR. 2012. Shared                       |
|                 | 747 |     | Resistance to Aging and ALS in Neuromuscular Junctions of Specific Muscles.           |
|                 | 748 |     | PLoS One 7:e34640.                                                                    |
|                 | 749 | 40. | Valdez G, Tapia JC, Kang H, Clemenson GD, Gage FH, Lichtman JW, Sanes                 |
|                 | 750 |     | JR. 2010. Attenuation of age-related changes in mouse neuromuscular synapses by       |
| <u></u>         | 751 |     | caloric restriction and exercise. Proc Natl Acad Sci U S A <b>107</b> :14863–8.       |
| $\mathbf{O}$    | 752 | 41. | Lyons PR, Slater CR. 1991. Structure and function of the neuromuscular junction       |

754

755 756

757

758

759

42.

43.

t Posted Online

| 3 | 1 |  |
|---|---|--|

in young adult mdx mice. J. Neurocytol. 20:969-81.

membrane structure. Hum. Mol. Genet. 9:1357-67.

Rafael JA, Townsend ER, Squire SE, Potter AC, Chamberlain JS, Davies KE. 2000. Dystrophin and utrophin influence fiber type composition and post-synaptic

Cheng A, Morsch M, Murata Y, Ghazanfari N, Reddel SW, Phillips WD.

and the protective effects of voluntary exercise. PLoS One 8:e67970.

2013. Sequence of age-associated changes to the mouse neuromuscular junction

| 760 | 44. | Mauro A. 1961. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem.           |
|-----|-----|-----------------------------------------------------------------------------------------|
| 761 |     | Cytol. 9:493–5.                                                                         |
| 762 | 45. | Mishina M, Takai T, Imoto K, Noda M, Takahashi T, Numa S, Methfessel C,                 |
| 763 |     | Sakmann B. 1986. Molecular distinction between fetal and adult forms of muscle          |
| 764 |     | acetylcholine receptor. Nature <b>321</b> :406–411.                                     |
| 765 | 46. | Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using          |
| 766 |     | real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-         |
| 767 |     | 408.                                                                                    |
| 768 | 47. | Gundersen K, Sanes JR, Merlie JP. 1993. Neural regulation of muscle                     |
| 769 |     | acetylcholine receptor epsilon- and alpha- subunit gene promoters in transgenic         |
| 770 |     | mice. J Cell Biol <b>123</b> :1535–1544.                                                |
| 771 | 48. | Son YJ, Thompson WJ. 1995. Nerve sprouting in muscle is induced and guided              |
| 772 |     | by processes extended by Schwann cells. Neuron 14:133–41.                               |
| 773 | 49. | Witzemann V, Barg B, Nishikawa Y, Sakmann B, Numa S. 1987. Differential                 |
| 774 |     | regulation of muscle acetylcholine receptor gamma- and epsilon-subunit mRNAs.           |
| 775 |     | FEBS Lett. <b>223</b> :104–12.                                                          |
| 776 | 50. | Wang X, Blagden C, Fan J, Nowak SJ, Taniuchi I, Littman DR, Burden SJ.                  |
| 777 |     | 2005. Runx1 prevents wasting, myofibrillar disorganization, and autophagy of            |
| 778 |     | skeletal muscle. Genes Dev. 19:1715–22.                                                 |
| 779 | 51. | Kues WA, Brenner HR, Sakmann B, Witzemann V. 1995. Local neurotrophic                   |
| 780 |     | repression of gene transcripts encoding fetal AChRs at rat neuromuscular                |
| 781 |     | synapses. J Cell Biol 130:949–957.                                                      |
| 782 | 52. | Schiaffino S, Reggiani C. 2011. Fiber types in mammalian skeletal muscles.              |
| 783 |     | Physiol. Rev. <b>91</b> :1447–531.                                                      |
| 784 | 53. | Guido AN, Campos GER, Neto HS, Marques MJ, Minatel E. 2010. Fiber type                  |
| 785 |     | composition of the sternomastoid and diaphragm muscles of dystrophin-deficient          |
| 786 |     | mdx mice. Anat. Rec. (Hoboken). 293:1722-8.                                             |
| 787 | 54. | Bloemberg D, Quadrilatero J. 2012. Rapid determination of myosin heavy chain            |
| 788 |     | expression in rat, mouse, and human skeletal muscle using multicolor                    |
| 789 |     | immunofluorescence analysis. PLoS One 7:e35273.                                         |
| 790 | 55. | Augusto V, Padovani CR, Eduardo G, Campos R. 2004. SKELETAL                             |
| 791 |     | MUSCLE FIBER TYPES IN C57BL6J MICE. Braz J Morphol Sci 21:89–94.                        |
| 792 | 56. | Flach RJR, Bennett AM. 2010. MAP kinase phosphatase-1a new player at the                |
| 793 |     | nexus between sarcopenia and metabolic disease. Aging (Albany. NY). 2:170-6.            |
| 794 | 57. | Vantaggiato C, Formentini I, Bondanza A, Naldini L, Brambilla R. 2006.                  |
| 795 |     | Central ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent            |
| 796 |     | cell signaling differentially. J Biol <b>5</b> :14.                                     |
| 797 | 58. | Shin S, Dimitri CA, Yoon S-O, Dowdle W, Blenis J. 2010. ERK2 but not ERK1               |
| 798 |     | induces epithelial-to-mesenchymal transformation via DEF motif-dependent                |
| 799 |     | signaling events. Mol. Cell <b>38</b> :114–27.                                          |
| 800 | 59. | Von Thun A, Birtwistle M, Kalna G, Grindlay J, Strachan D, Kolch W, von                 |
| 801 |     | Kriegsheim A, Norman JC. 2012. ERK2 drives tumour cell migration in three-              |
| 802 |     | dimensional microenvironments by suppressing expression of Rab17 and liprin- $\beta$ 2. |
| 803 |     | J. Cell Sci. <b>125</b> :1465–77.                                                       |
| 804 | 60. | Jang YC, Lustgarten MS, Liu Y, Muller FL, Bhattacharya A, Liang H,                      |
| 805 |     | Salmon AR, Brooks S.V. Larkin L. Hayworth CR, Richardson A, Van                         |

| 806 |     | <b>Remmen H</b> . 2010. Increased superoxide in vivo accelerates age-associated muscle  |
|-----|-----|-----------------------------------------------------------------------------------------|
| 807 |     | atrophy through mitochondrial dysfunction and neuromuscular junction                    |
| 808 |     | degeneration. FASEB J. 24:1376–90.                                                      |
| 809 | 61. | Sakellariou GK, Davis CS, Shi Y, Ivannikov M V, Zhang Y, Vasilaki A,                    |
| 810 |     | Macleod GT, Richardson A, Van Remmen H, Jackson MJ, McArdle A,                          |
| 811 |     | Brooks S V. 2014. Neuron-specific expression of CuZnSOD prevents the loss of            |
| 812 |     | muscle mass and function that occurs in homozygous CuZnSOD-knockout mice.               |
| 813 |     | FASEB J. <b>28</b> :1666–81.                                                            |
| 814 | 62. | Zhang Y, Davis C, Sakellariou GK, Shi Y, Kayani AC, Pulliam D,                          |
| 815 |     | Bhattacharya A, Richardson A, Jackson MJ, McArdle A, Brooks S V, Van                    |
| 816 |     | Remmen H. 2013. CuZnSOD gene deletion targeted to skeletal muscle leads to              |
| 817 |     | loss of contractile force but does not cause muscle atrophy in adult mice. FASEB        |
| 818 |     | J. <b>27</b> :3536–48.                                                                  |
| 819 | 63. | Banks GB, Chamberlain JS, Froehner SC. 2009. Truncated dystrophins can                  |
| 820 |     | influence neuromuscular synapse structure. Mol Cell Neurosci 40:433-41.                 |
| 821 | 64. | Merlie JP, Sanes JR. 1985. Concentration of acetylcholine receptor mRNA in              |
| 822 |     | synaptic regions of adult muscle fibres. Nature <b>317</b> :66–68.                      |
| 823 | 65. | Fontaine B, Sassoon D, Buckingham M, Changeux JP. 1988. Detection of the                |
| 824 |     | nicotinic acetylcholine receptor alpha-subunit mRNA by in situ hybridization at         |
| 825 |     | neuromuscular junctions of 15-day-old chick striated muscles. EMBO J 7:603-             |
| 826 |     | 609.                                                                                    |
| 827 | 66. | Simon AM, Hoppe P, Burden SJ. 1992. Spatial restriction of AChR gene                    |
| 828 |     | expression to subsynaptic nuclei. Development <b>114</b> :545–53.                       |
| 829 | 67. | Brenner HR, Herczeg A, Slater CR. 1992. Synapse-specific expression of                  |
| 830 |     | acetylcholine receptor genes and their products at original synaptic sites in rat       |
| 831 |     | soleus muscle fibres regenerating in the absence of innervation. Development            |
| 832 |     | <b>116</b> :41–53.                                                                      |
| 833 | 68. | Barns M, Gondro C, Tellam RL, Radley-Crabb HG, Grounds MD,                              |
| 834 |     | Shavlakadze T. 2014. Molecular analyses provide insight into mechanisms                 |
| 835 |     | underlying sarcopenia and myofibre denervation in old skeletal muscles of mice.         |
| 836 |     | Int. J. Biochem. Cell Biol. 1–12.                                                       |
| 837 | 69. | Chai RJ, Vukovic J, Dunlop S, Grounds MD, Shavlakadze T. 2011. Striking                 |
| 838 |     | denervation of neuromuscular junctions without lumbar motoneuron loss in                |
| 839 |     | geriatric mouse muscle. PLoS One 6:e28090.                                              |
| 840 | 70. | Pun S, Sigrist M, Santos AF, Ruegg MA, Sanes JR, Jessell TM, Arber S,                   |
| 841 |     | <b>Caroni P</b> . 2002. An intrinsic distinction in neuromuscular junction assembly and |
| 842 |     | maintenance in different skeletal muscles. Neuron 34:357–70.                            |
| 843 | 71. | Punga AR, Lin S, Oliveri F, Meinen S, Rüegg MA. 2011. Muscle-selective                  |
| 844 |     | synaptic disassembly and reorganization in MuSK antibody positive MG mice.              |
| 845 |     | Exp. Neurol. $230:207-17$ .                                                             |
| 846 | 72. | Ling KKY, Gibbs RM, Feng Z, Ko C-P. 2011. Severe neuromuscular                          |
| 847 |     | denervation of clinically relevant muscles in a mouse model of spinal muscular          |
| 848 | 70  | atropny. Hum Mol Genet 21:185–195.                                                      |
| 849 | 13. | Nowaczyk MJM, Thompson BA, Zeesman S, Moog U, Sanchez-Lara PA,                          |
| 850 |     | Magoulas PL, Falk KE, Hoover-Fong JE, Batista DAS, Amudhavalli SM,                      |

| 851 | White SM, Graham GE, Rauen KA. 2013. Deletion of MAP2K2/MEK2: a novel |
|-----|-----------------------------------------------------------------------|
| 852 | mechanism for a RASopathy? Clin. Genet. 85:138–146.                   |
| 853 |                                                                       |

# 855 LEGENDS TO FIGURES856

| 857 | Figure 1. Mice generation and characterization of their ERK1/2 expression. (A)                                                                                                      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 858 | Sternomastoid (STN) and tibialis anterior (TA) extracts from 14-week-old mice were                                                                                                  |
| 859 | probed simultaneously with antibodies to ERK2 and $\alpha$ -tubulin ( $\alpha$ -Tub). Genotypes were:                                                                               |
| 860 | Control: <i>Hsa-Cre<sup>-/-</sup>; Erk2<sup>f/f</sup></i> . Het: <i>Hsa-Cre<sup>+/-</sup>; Erk2<sup>f/+</sup>. mErk2<sup>CKO</sup>: Hsa-Cre<sup>+/-</sup>; Erk2<sup>f/f</sup></i> . |
| 861 | Histograms show normalized quantification relative to control. A 90%-reduction in                                                                                                   |
| 862 | ERK2 levels in both muscles in $mErk2^{CKO}$ animals (n=3) relative to control (n=2) was                                                                                            |
| 863 | observed (**, p<0.01). (B) Same extracts in (A) were probed simultaneously with                                                                                                     |
| 864 | antibodies to ERK1 and $\alpha$ -Tub. Histograms show normalized quantification relative to                                                                                         |
| 865 | control. A 20% reduction in ERK1 in $mErk2^{CKO}$ muscle was observed (*, p<0.05). (C)                                                                                              |
| 866 | TA extracts from 14-week-old control, Erk1 <sup>-/-</sup> , mErk2 <sup>CKO</sup> and DKO mice were first                                                                            |
| 867 | probed with antibodies to phosphorylated ERK1/2 (pERK1/2) (bottom panel). The blot                                                                                                  |
| 868 | was stripped and reprobed simultaneously with antibodies to total ERK1/2 (tERK1/2) and                                                                                              |
| 869 | $\alpha$ -Tub (Top panel). ERK1 is totally absent in <i>Erk1</i> <sup>-/-</sup> and DKO muscle, and reduced                                                                         |
| 870 | pERK2 in $mErk2^{CKO}$ and DKO is in line with reduced tERK2 levels. Same results were                                                                                              |
| 871 | obtained with STN extracts (not shown). (D) Spinal cord (SPC), heart, kidney and liver                                                                                              |
| 872 | extracts from 9-week-old control and DKO mice probed with antibodies to tERK1/2 and                                                                                                 |
| 873 | $\alpha$ -Tub. ERK2/ $\alpha$ -Tub ratios are shown at the bottom of the blots. Except for kidney, no                                                                               |
| 874 | reduction in ERK2 levels was observed in these tissues.                                                                                                                             |
| 875 | Figure 2. DKO animals displayed stunted postnatal growth, muscle weakness and                                                                                                       |
| 876 | shorter lifespan. (A) Male weight progression was similar to control for $ErkI^{-/-}$ and                                                                                           |
| 877 | $mErk2^{CKO}$ mice, whereas mild DKO animals failed to gain weight from around week 9                                                                                               |
| 878 | and severe DKO began losing weight around week 7. Similar weight progression was                                                                                                    |

| anu               | 880 | $(n\geq7)$ ; mild DKO ( $n\geq3$ , weeks 4-16; n=2, week 18); severe DKO ( $n\geq4$ , weeks 4-10; n=2,                                                  |
|-------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ž                 | 881 | week 11). DKO mild, p<0.01 vs. matching time-point control, t-test, starting at week 6                                                                  |
| oted              | 882 | onwards. DKO severe, p<0.01 starting at week 5 onwards. (B) Forelimb grip strength                                                                      |
| Scep              | 883 | was measured every other week starting at week 7 in males and females. Peak tension (g)                                                                 |
| Ă                 | 884 | was normalized to body weight (g). DKO mild and severe animals showed comparable                                                                        |
|                   | 885 | decline in muscle strength, while Erk1 <sup>-/-</sup> and mErk2 <sup>CKO</sup> mice were similar to control. Per                                        |
|                   | 886 | time-point: Control (n $\geq$ 4); <i>Erk1</i> <sup>-/-</sup> (n $\geq$ 4); <i>mErk2</i> <sup>CKO</sup> (n $\geq$ 5); DKO mild (n $\geq$ 4, weeks 7-13;  |
|                   | 887 | n=2, week 15; n=1, week 17); DKO severe (n≥3, weeks 7-9; n=1, week 11). DKO mild                                                                        |
|                   | 888 | and severe, p<0.01, ANOVA, week 9 onwards. (C) Mice were subjected to an                                                                                |
| lar               | 889 | accelerating rotarod protocol, and the time-to-fall (s) was recorded. No significant                                                                    |
| d Cellt           | 890 | differences between controls and Erk1 <sup>-/-</sup> or mErk2 <sup>CKO</sup> were resolved. DKO mild animals                                            |
| lar and<br>Biolog | 891 | fell off the rotating drum consistently earlier than controls (p<0.01 vs. control, ANOVA).                                                              |
| lolecu            | 892 | Per time-point: Control ( $n\geq 5$ ); <i>Erk1</i> <sup>-/-</sup> ( $n\geq 3$ , week 9-17; $n=2$ , week 19); <i>mErk2</i> <sup>CKO</sup> ( $n\geq 5$ ); |
| 2                 | 893 | DKO mild (n≥3, weeks 9-13; n=2, week 15; n=1, week 17). ( <b>D</b> ) Kaplan-Meier survival                                                              |
|                   | 894 | curves for DKO mild and severe mice. Median lifespan were: 71 days, n=23 (severe);                                                                      |
|                   | 895 | 121 days, n=7 (mild); p<0.0001, Log-rank test. (E) A surviving female mild DKO mouse                                                                    |
|                   | 896 | that developed kyphosis (arrowhead), absent in a matched control.                                                                                       |
|                   | 897 | Figure 3. Fragmented NMJs in STN from young adult DKO mice. (A) An example of                                                                           |
|                   |     |                                                                                                                                                         |

898 a control NMJ labeled with fluorescein-BTX to mark AChRs (A') and with antibodies to

seen in females (not shown). Per time-point: Control ( $n \ge 5$ );  $Erkl^{-/-}$  ( $n \ge 6$ );  $mErk2^{CKO}$ 

- 899 synaptophysin (SYN), followed by rhodamine-conjugated secondary antibodies, to label
- 900 nerve terminals (A"). Long, continuous domains of postsynaptic AChRs are tightly
- 901 apposed by nerve terminals. (B) and (C) Examples of fragmented NMJs in severe and

| 902 | mild DKO STN, respectively. Small, mostly round AChR domains variably apposed by                                              |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 903 | nerve terminal staining. Scale bars: 10 µm.                                                                                   |
| 904 | Figure 4. Quantification of synaptic fragmentation in STN and TA. Number of                                                   |
| 905 | AChR domains per endplate was counted from confocal maximal projections of NMJs in                                            |
| 906 | STN (A) and TA (B) from all 4 genotypes. Data were grouped in bins of 5 as represented                                        |
| 907 | in the X-axis, and the percent of NMJs in those bins were plotted in the Y-axis. STN:                                         |
| 908 | Control (n= 85 NMJs, 5 mice); <i>Erk1<sup>-/-</sup></i> (80, 4); <i>mErk2<sup>CKO</sup></i> (90, 6); DKO (52, 3). TA:         |
| 909 | Control (n= 65, 4); <i>Erk1</i> <sup>-/-</sup> (32, 2); <i>mErk2</i> <sup>CKO</sup> (112, 5); DKO (37,3). The results section |
| 910 | describes the statistical analysis of the data.                                                                               |
| 911 | Figure 5. Fragmented NMJs in <i>mErk2<sup>CKO</sup></i> STN and DKO TA. An example of a                                       |
| 912 | highly fragmented NMJ from $mErk2^{CKO}$ STN (A), a normal NMJ from control TA (B)                                            |
| 913 | and a fragmented NMJ from DKO TA muscle (C). Overexposure in the rhodamine                                                    |
| 914 | channel explains the strong intensity of the SYN staining in C''. Scale bars: 10 $\mu$ m.                                     |
| 915 | Figure 6. Quantification of central myonuclei in the STN. STN cross sections from                                             |
| 916 | 14-week-old mice were stained for H&E. 20X fields were selected, and total number of                                          |
| 917 | fibers and fibers with centrally located nuclei (arrows) were counted. Representative 20X                                     |
| 918 | field from control (A) and from mild DKO muscle (B). Scale bar: 50 $\mu$ m. (C)                                               |
| 919 | Quantification. Control, Erk1 <sup>-/-</sup> and mErk2 <sup>CKO</sup> muscle had a similar proportion of fibers               |
| 920 | with central nuclei, while DKO had about twice as many. **, p<0.01 vs. control. N=3                                           |
| 921 | muscles for all genotypes except $ErkI^{-/-}$ (n=2). Total fibers scored: Control, 1928; $ErkI^{-/-}$ ,                       |

1234; *mErk2<sup>CKO</sup>*, 1405; DKO, 1767. 922

923 Figure 7. Regulation of AChR expression by ERK1/2. (A) Examples of fields with

924 DKO NMJs showing weaker (top panel) or faint (bottom panel) AChR staining (big

| 925 | single arrowheads) relative to those in the same field that show more normal levels of              |
|-----|-----------------------------------------------------------------------------------------------------|
| 926 | AChR staining (small double arrowheads). Two examples of nerve terminal sprouts                     |
| 927 | (arrows) in the DKO STN, labeled for SYN, are shown in the top panel. The short sprout              |
| 928 | in the bottom right appears to induce/connect with two small AChR clusters in the next              |
| 929 | myofiber. Scale bars: 10 $\mu$ m. ( <b>B</b> ) Quantification of weak/faint BTX-stained NMJs. N= 2- |
| 930 | 6 muscles/genotype. (C) Real-time PCR for the adult AChR subunit mRNAs in 9-week-                   |
| 931 | old STN and TA muscle. Values were normalized to control. A consistent decrease in                  |
| 932 | <i>Chrne</i> mRNA was observed in $mErk2^{CKO}$ and DKO muscle. ( <b>D</b> ) Real-time PCR for the  |
| 933 | fetal AChRy subunit gene (Chrng) mRNA in 9-week-old STN and TA muscle. Values                       |
| 934 | were normalized to control. A 40-fold increase in Chrng mRNA was detected selectively               |
| 935 | in DKO STN. (E) Real-time PCR for two additional denervation markers, Runx-1 and                    |
| 936 | Myh3. Values were normalized to control. Significant induction for these markers was                |
| 937 | restricted to DKO STN. For all real-time PCR assays, n=6 for both muscles and all                   |
| 938 | genotypes except n=5 for $Erkl^{-/-}$ muscles. Muscles from both male and female animals            |
| 939 | were combined because no significant gender differences were found in the Ct values. *,             |
| 940 | p<0.05; **, p<0.01.                                                                                 |
| 941 | Figure 8. Reduced AChRe protein in DKO TA. AChRs were affinity purified from 1                      |
| 942 | mg-lysates from 3 control and 3 DKO TA muscles using biotin-BTX (BBTX) and                          |
| 943 | streptavidin-agarose. Precipitates were subjected to SDS-PAGE, transferred to a PVDF                |

944 membrane and probed for AChR $\varepsilon$  (arrow). Histogram shows average  $\pm$  SEM of band 945 intensities in arbitrary units. \*, p<0.05.

946 Figure 9. Effects on fiber number, size and type. (A) Representative cross sections of

947~ STN muscles from 14-week-old female mice stained for dystrophin. Scale bar: 200  $\mu m.$ 

| Accepted Mc      |  |
|------------------|--|
|                  |  |
|                  |  |
|                  |  |
| ular             |  |
| ld Cell<br>gy    |  |
| llar an<br>Biolo |  |
| Aolecu           |  |
| <                |  |

ine

| 948 | (B) Representative cross sections of TA muscles from 14-week-old female mice stained             |
|-----|--------------------------------------------------------------------------------------------------|
| 949 | for dystrophin. Scale bar: 400 $\mu$ m. (C) Quantification of fiber numbers. A significant       |
| 950 | reduction in total fibers per cross section was detected in the DKO STN. N=5 for controls        |
| 951 | and n=3 for all other genotypes. We combined data for males and females per genotype             |
| 952 | because no significant gender differences were found for this parameter. (D)                     |
| 953 | Quantification of average fiber area. Because of gender differences in fiber area, raw data      |
| 954 | was normalized relative to control of the same sex. Controls were set at 100% and a one-         |
| 955 | sample t-test was used to statistically compare the results relative to control. N=3 for both    |
| 956 | muscles and all genotypes. DKO muscle had a smaller average fiber area that was                  |
| 957 | statistically significant for the TA. (E) Distribution of fast fiber types in STN. Small but     |
| 958 | significant increases in 2X fibers were observed in muscles from $mErk2^{CKO}$ and DKO           |
| 959 | mice. (F) Distribution of fast fiber types in TA. No changes in fiber type distribution due      |
| 960 | to genotype were observed in this muscle. We combined data within each muscle for                |
| 961 | males and females per genotype because no significant gender differences were found for          |
| 962 | this parameter. N=3 for both muscles and all genotypes. *, p<0.05; **, p<0.01.                   |
| 963 | Figure 10. Activated p38 in DKO muscle. (A) Control and DKO STN and TA extracts,                 |
| 964 | n=3 per muscle/genotype, were probed with antibodies to phosphorylated p38 (pp38),               |
| 965 | total p38 (p38). Variations in loading were checked by stripping membranes and probing           |
| 966 | for $\alpha$ -Tub. ( <b>B</b> ) Normalized phosphorylated/total protein ratios for p38 showed no |
| 967 | statistically significant changes in the activation of this kinase in DKO muscle relative to     |
| 968 | control.                                                                                         |
| 969 |                                                                                                  |
|     |                                                                                                  |









Molecular and Cellular Biology

*mERK2***<sup>cK0</sup> STN** В Molecular and Cellular Biology **CONTROL TA** С

Merge



AChR

SYN

Molecular and Cellular Biology











A



Control

DKO

MCB

Molecular and Cellular Biology